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Preface

Ferrite phase-shifter and control devices are widely used in conjunction with
passive microwave circuits in beam shaping and steering of array antennas
and in multichannel switching. The intention of this text is to provide the reader
with some preliminary insight into the operation of some basic ferrite control
devices and to note some system uses. In the beam steering application, variable
phase-shifters are employed to tilt the beam of a simple one-dimensional array
or more sophisticated two- and three-dimensional ones. Beam shaping is
achieved by using variable power dividers and switches. At modest microwave
wavelengths, this is often done with the aid of semiconductor devices, but at
very high power levels and at millimeter wavelengths, ferrite devices are used
almost exclusively. A drawback of the ferrite control device is its longer switch-
ing time; its microwave power rating is, however, usually superior. Although
many ferrite devices are nonreciprocal, this is often not essential or indeed
desirable in the control area. Mechanically actuated passive switches and vari-
able phase shifters using rotatable half-wave plates are other possibilities. Mul-
tichannel switchingmay consist of making provisions for switching on a standby
transmitter in case of a failure mode in some simple radar or satellite equipment
or it may involve the control of a high-power signal using Butler matrices; it may
also be utilized in the construction of multiport power combiners. The three-
port junction circulator is, of course, also ideally suited for switching a signal at
one port to any of n − 1 others. Frequency reuse where spatially isolated beams
operate in the same frequency band is another area where power dividers and
variable phase shifters are required. Switching of the hand of polarization of a
wave or rotating its polarization are other applications. Microwave ferrite
phase-shifters and other devices essentially rely for their operation on the dif-
ferent birefringences exhibited by a magnetized magnetic insulator under the
influence of different direct and alternating magnetic fields. Nonlinear effects
or spinwave instabilities at large signal levels are a separate consideration.
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1

Microwave Switching Using Junction Circulators
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

1.1 Microwave Switching Using Circulators

Since the direction of circulation of a circulator is determined by that of the
direct magnetic field, it may be employed to switch an input signal at one port
to either one or the other two. Switching is achieved by replacing the permanent
magnet by an electromagnet or by latching the microwave ferrite resonator
directly by embedding a current carrying wire loop within the resonator.
The schematic diagram of a switched junction is shown in Figure 1.1a. It is

particularly useful in the construction of Butler-type matrices in phase array
systems. A single-pole three throw version is depicted in Figure 1.1b.
Two common arrangements in which ferrite circulators may be employed to

obtain microwave switching are separately illustrated in Figure 1.1c and 1.1d.
The first uses a circulator in conjunction with a pin diode switch to vary the
short-circuit plane terminating port 2. A transmission analog phase shifter is
therefore obtained between ports 1 and 3 with this mode of operation. The sec-
ond version is also a transmission configuration but now a switchable circulator
is used to control the path between ports 1 and 3 of the circulator. The switching
speed of the pin device is normally the faster one.

1.2 The Operation of the Switched Junction Circulator

The adjustment of a fixed field circulator or a switched circulator is a two-step
procedure. The first fixes its midband frequency and the second its gyrotropy.
A phenomenological description of these two operations is illustrated in

1
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1

(a)

(b)

(c)

(d)

2

1

3

4

2

In

In

In

In

Out

Out

𝜙

𝜙

Figure 1.1 Microwave phase shifter using (a) schematic of circulator switch, (b) SP4T Butler
switch using circulators, (c) pin dioded switch and fixed circulator, and (d) switched circulator.
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Figure 1.2a and b in the case of a stripline geometry. The direction of circulation
is here fixed by the sense of the direct magnetic field intensity along the axis of
the resonator. This may be done by either internally latching the hysteresis loop
of the magnetic insulator between its two remanent states or by having recourse
to an external magnetic circuit. The electric field pattern may be rotated either
clockwise or anticlockwise by splitting the degeneracy of the counterrotating
field patterns of the resonator. A latched stripline geometry is indicated in
Figure 1.3.

Ground plane

(a)

(b)

Magnetic field
Electric field

Ferrite resonator
Magnetic wall

Center conductor

Figure 1.2 Standing wave patterns in (a) demagnetized stripline junction and (b)
magnetized stripline junction.
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1.3 The Turnstile Circulator

The waveguide junction switch is usually but not exclusively based on a Faraday
rotation effect along a quarter-wave long cavity resonator open-circuited at one
flat face and short-circuited at the other. Its first circulation condition is a 90

Ground plane

Ferrite
disk

Center
conductor

Wire

Ferrite
disk

Current

Wire loop

Magnetic field

R

r

Figure 1.3 Current and magnetic field in ferrite disc.
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cavity with no rotating of the electric field pattern, which is again a figure of
eight pattern. Its second circulation condition is obtained by replacing the die-
lectric resonator by a gyromagnetic insulator. The effect is to rotate the polar-
ization of the electric field by a 15 angle in the positive direction of propagation
and a further 15 in the opposite direction. The total rotation places an electric
null at a typical output port.
Figure 1.4a and b are sketches of the electric and magnetic HE11 standing

wave patterns about midway along the cavity. The electric field is zero at the
electric wall of the cavity, whereas the magnetic field is zero at its magnetic flat
wall.

1

23

2
3

1

(a)

(b)

Figure 1.4 (a) Ferrite
unmagnetized; first circulation
condition. (b) Ferrite magnetized;
second circulation condition.
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Switching ferrite

Magnetizing coil
Conductive coil
Circulator ferrite
Dielectric spacer
Metallic transformer

Dielectric sleeve

Figure 1.5 Schematic diagram of externally latched circulator using a post-resonator
waveguide junction.

Switching wire

Switching wire

Waveguide

(a)

(b)

Ferrite resonator
Dielectric disc

Metal insert

Waveguide

Ferrite resonator
Dielectric disc
Metal insert

Figure 1.6 Schematic diagram of waveguide junction circulator using a partial height: (a)
triangular and (b) circular resonator with a wire loop.



1.4 Externally and Internally Latched Junction
Circulators

Circulators may be either actuated by an electromagnet or they may be operated
by internally or externally latching the ferrite resonator. Figure 1.5 illustrates
one externally latched arrangement. Figure 1.6a and b depict internally latched
waveguide devices using half-wave or quarter-wave long resonators.
Figure 1.7 indicates the two possible wire configurations met in the construc-

tion of a waveguide switch using a prism resonator.

1.5 Standing Wave Solution of Resonators with
Threefold Symmetry

Two resonators met in the design of switched circulators with threefold sym-
metry are the equilateral triangle structure and the quasi WYE geometry.

Switching wire

(a) (b)

(c)

Waveguide
Ferrite resonator
Dielectric disc
Metal insert

Figure 1.7 Schematic diagrams of waveguide circulators showing different switching wire
configurations.

Microwave Switching Using Junction Circulators 7



The standing wave solution of the second circulation solutions is here not obvi-
ous but each may be constructed by taking suitable linear combinations of those
of the first circulation condition. Figure 1.8a and b illustrate the equipotential
lines of the standing wave patterns in each situation.

1.6 Magnetic Circuit Using Major Hysteresis Loop

The direct magnetic field in a junction circulator can be established using either
an external electromagnet or it can be switched by current pulses through a
magnetizing wire between the two remanent states of the major or indeed of
a minor hysteresis loop of a closed magnetic circuit. The former arrangement
requires a holding current to hold the device in a given state.
In the latter one, however, no such current is necessary; the device remains

latched in a given state until another switching operation is required. The
advantages and disadvantages of each type of circuit are understood.
Operation on themajor hysteresis loopmay be understood by scrutinizing the

hysteresis loop in Figure 1.9, providing it is recognized that the size and shape of
this loop may vary with the speed of the switching process. In this situation, the
magnetization of the toroid is driven between two remanent states (±4πMr)

+3.0 V

(a)

(b)

+4.5 V

–4.5 V

+1.5 V

+3.0 V

+2.0 V

+2.0 V

+1.0 V

+1.0 V

–1.0 V
–1.5 V

–1.5 V

–1.0 V

–1.5 V

–1.5 V

–1.5 V

0 V

0 V

0 V

0 V

+II

Figure 1.8 Standingwave solution of three-port circulators using (a) triangular resonator and
(b) WYE resonator.
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equidistant from the origin by the application of a current pulse sufficiently
large to produce a field perhaps three or five times that of the coercive force.
After this point is reached, the current pulse is removed and the magnetiza-

tion will move to the remanent value (±4πMr) and remain there until another
switching operation is desired. This sort of electronic driver circuit is relatively
simple since it is only required that the toroids be driven back and forth between
the major remanent states of the hysteresis loop.

1.7 Display of Hysteresis Loop

The magnetic properties and parameters of a magnetic core or toroid under dif-
ferent operating conditions, such as temperature, say, are best discussed in
terms of the details of its hysteresis loop.
Some experimental quantities that are of particular interest include the sat-

uration magnetization (M0), the remanent magnetization (Mr), and the coercive
force (Hc). The experimental display of such loops is therefore of some interest.
One circuit that may be used for this purpose is outlined in Figure 1.10. This

–4πMr

4πMr

–4πMmax

+4πMmax

H

M

Figure 1.9 Typical hysteresis loop of a latching phase shifter operating with a major
hysteresis loop switching.
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arrangement develops voltage Vp and Vi that are proportional to B and H,
respectively.
The magnetic field (H) in the core is monitored by measuring the voltage (Vp)

across a resistor in series with the primary winding, see Figure 1.10.

H =
Np

Ip

Vp

Rp
,Am−1 1 1

where Ip is the effective of the primary winding,Np is the number of turns of the
primary winding (10–30), and Rp is the resistor in series with the primary coil
(10Ω). The magnetization (B) is likewise evaluated by forming the voltage (Vi)
across the capacitance of the RC integrator in the secondary circuit.

B≈
−ViRiCi

NsA
1 2

where Ri is the series resistance of the integrator (100 kΩ), Ci is the capacitance
of the integrator (0.10 μF), Ns is the number of turns of the secondary winding
(10–30), and A is the cross-sectional area of the core.
The data shown in Figure 1.11 on the effects of small air gaps on the square-

ness of the hysteresis loop have been obtained using the arrangement out-
lined here.

ip isNp Ns

Rs

Rp
Csecer

B

H

Power
amplifier

Audio
signal

generator

VerticalHorizontal

𝜙

Figure 1.10 Schematic diagram of hysteresis display.
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1.8 Switching Coefficient of Magnetization

The change of magnetization in a ferrite core consists usually in reversal of the
magnetization, e.g. from negative remanence to the positive remanence corre-
sponding to the magnetic field applied. The ultimate state of the magnetization
that is set up (after the passage of the current pulse) is always symmetrical here,
with respect to zero. It is observed that in most cases, the change in the mag-
netization produced by this field cannot follow the increase in the current.
The general situation is quite complicated but for an applied magnetic field

slightly in excess of the coercive force, Hc, domain wall motion will, in general,
be the predominant reversal mechanism. In this case, the flux change is accom-
plished by the motion of Bloch walls, which separate the domains of differently
oriented magnetization.
For suitable oriented single crystals of ferrite, a very simple domain configu-

ration may be achieved, which makes it possible to obtain information on the
behavior of moving domain wall.
Studies on single crystals of ferrite have demonstrated that, under this con-

dition, the wall velocity depends linearly on the applied magnetic field. This
leads to a linear relation between the direct field and the reciprocal of the
switching time. Such a relationship is also noted experimentally for polycrystal-
line ferrites although the actual domain configuration is not known.
The switching time is usually measured by using a core with two windings as

shown in Figure 1.12. The output voltage pulse appearing at the termination of
the secondary winding exhibits a characteristic shape with two separate maxima
when a current pulse is passed through the magnetization winding.
For ferrite with hysteresis loops, the first maximum in the output voltage

represents a small percentage of the total area under the curve and hence of
the shape in magnetization.
The duration T of a voltage pulse is defined as the time (counted from the

beginning of the current pulse) that elapses before the voltage has dropped

(a) (b) (c) (d)

Figure 1.11 Hysteresis loops showing the effect of gaps in a magnetic circuit. (a) No gap, (b)
gap of 2½ thou, (c) gap of 5 thou, and (d) gap of 10 thou.
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to 10% of the maximum value; for the maximum value the second peak is con-
sidered. The dependence of the switching time on the magnetization producing
flux reversal is most clearly represented by plotting 1/T as a function of themag-
netizing strengthH, in the manner indicated in Figure 1.13. Over the majority of
the range shown, 1/T has a linear dependence on H, which may be adequately
represented by

T H −HH0 = S 1 3

In this expression, S is known as the switching coefficient, and H0, which is of
the same order of magnitude as the coercive force Hc of the material, may be
termed the threshold field for irreversible magnetization. It should be noted that,
although the curve is continued to values of H less than H0, the switching of the
core under these conditions produces a smaller hysteresis loop: i.e. the material is
not driven to magnetic saturation and such operation is not desirable.
The optimum squareness ratio Rs occurs for values ofH fractionally different to

H0, but it is usual to adopt magnetizing fields of between 2H0 and 5H0, the slight
deterioration in squareness being accepted in the interests of faster switching.

I

E

Figure 1.12 Ferrite core with two windings for measuring switching time.
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Figure 1.13 Reciprocal
reversal time 1/T as a
function of direct magnetic
field H for ferroxcube.
Source: Reprinted with
permission Van der Heide
et al. (1956).
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It is found that the great majority of ferrites with the squareness and the coer-
cive force usual for switching elements all have a reversal constant S = (H −H0)T
of the same order of magnitude.
In the case of ferroxcube 6 A considered above, the resultant value is

S0 = 80 (μs)(A m−1).

1.9 Magnetostatic Problem

One way to explore the internal direct magnetization of the magnetic insulator
in the presence of one or more loops is to have recourse to a magnetostatic
solver. Figure 1.14 shows the magnetizing effect of a single circular wire loop
of radius r, carrying 10 A, on a cylindrical resonator with radius R. One feature
of this result is that the magnetization on the axis of the loop is inversely pro-
portional to its radius so that such switches are more readily realized at high
frequencies than at lower ones.
One possible first-order model of such a resonator is one with a narrow

demagnetized concentric region, a second with a magnetization in one sense,
and a third with a magnetization in the other sense with still another value.
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Figure 1.14 Up and down
direct magnetic field strength
in a cylindrical resonator using
a single wire loop using a
magnetostatic solver (r/R = 0.5,
r/R = 0.6, r/R = 0.707) (Helszajn
and Sharp 2012).
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The more general problem divides the cross-section of the resonator into a
number of concentric rings as shown in Figure 1.15.
Such a model can readily be set up, in the case of a cylindrical geometry in

closed form or, in general, using a commercial FE package.

1.10 Multiwire Magnetostatic Problem

Figure 1.16 depicts the situation in the case of the pair of stacked circular
loops. The spacing between the wires is half the thickness of the resonator.
The inductance of the wire configuration using two wire loops is four times

Wire

R
H1, B1

Figure 1.15 Plan view of a cylindrical
resonator subdivided in
concentric rings.
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Figure 1.16 Up and down
direct magnetic field strength
in a cylindrical resonator using
a pair of wire loops using a
magnetostatic solver (r/R = 0.5,
r/R = 0.6, r/R = 0.707) (Helszajn
and Sharp 2012).
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that of the single loop. The stored energy is likewise increased by a factor of
four. This energy, divided by the switching time, is related to the instanta-
neous power required from the driver. The exact problem requires the dis-
cretization of the resonator both across and along the geometry and the
assignment of the local gyrotropies in each region. This is obviously not a
realistic approach without a three-dimensional solver in conjunction with
a magnetostatic analyzer. It is of note, however, that the alternating mag-
netic field goes to zero at the open flat faces of the resonator. This means
that the precise gyrotropy has no significant impact on the gyrotropy of the
resonator.

1.11 Shape Factor of Cylindrical Resonator

The ratio of the two oppositely magnetized regions is defined by a shape fac-
tor q:

q =
Surface area of the inner region magnetized along the + zdirection

Surface area of onetypical outer region magnetized along the−zdirection

1 4

If the inner radius of the resonator is taken as ri and the outer radius as r0, then

q =
r2i

r20 − r2i
1 5

The condition q = 1 corresponds to that for which the cross-sectional areas of
the two regions are equal.
The shape factor of a prism resonator with an equilateral core is unity.

The shape factor of equilateral prism resonator employing a regular hexagonal
wire is

q =
A2−3L2

L2
1 6

For a wye cavity with the wire loop located at the terminals between the cir-
cular region and a typical strip is

q =
W R−r

πr2
1 7

The work assumes a constant gyrotropy κpi in the inner region equal to 0.707
that of the saturated material, κ0, which is taken here as 0.7. This means that the
gyrotropy in the outer region lies between 0 and κ0. When q equals unity the
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partial gyrotropies in the outer region is equal to one third. The diagonal ele-
ment of the tensor permeability in this work is taken as unity for simplicity sake.
Figure 1.17 indicates the variation of the gyrotropy in the outer region with the
shape factor q, assumed in this work.
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2

The Operation of Nonreciprocal Microwave Faraday
Rotation Devices and Circulators
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

2.1 Introduction

A classic phenomenon encountered in connection with propagation in a gyro-
magnetic medium is that of the rotation of the plane of polarization of an alter-
nating radio frequency wave in the plane transverse to that of propagation. This
effect is displayed by the medium, provided the direct magnetic field intensity is
along the direction of propagation. Faraday rotation is nonreciprocal and is
responsible for a number of important ferrite devices.
The Faraday rotation effect describes the rotation of the plane of polarization

of a linearly polarized wave in an infinite gyromagnetic medium or circular
waveguide. This effect is nonreciprocal. This means that, if a wave is rotated
by θ in the positive z-direction of propagation, it is rotated a further θ in
the negative z-direction. Faraday rotation may be understood by either forming
a linear combination of the counterrotating magnetic circularly polarized nor-
mal modes of the medium or in terms of coupled wave theory. Both approaches
are developed in detail. The origin of the splitting between the counterrotating
modes may be understood by recalling that a gyromagnetic region displays dif-
ferent scalar permeabilities under the influence of such alternating fields. If the
input waves into the two coupled waves correspond to one or the other of the
two normal modes, no coupling takes place, and the output waves are emergent
in the same normal mode. The chapter includes a definition of the gyrator net-
work and the description of some common ferrite devices in round waveguides
based on Faraday rotation effect, such as Faraday rotation isolators, circulators,
nonreciprocal phase-shifters, and amplitude modulators and switches. Three
and four-port circulators based on turnstile junctions are also described.
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2.2 Faraday Rotation

The simplest problem involving the tensor permeability is that of propagation in
an infinite medium. This simple introduction serves to demonstrate the well-
known Faraday effect on which a number of different ferrite devices rely.
The arrangement considered is that where the direction of propagation and
the direct magnetic field are both in the z-direction and the microwave field
is in the transverse plane. Propagation in the medium is described by replacing
μr by [μ] in Maxwell’s equations

∇× E = − jωμ0 μ H 2 1a

∇× H = jωε0εrE 2 1b

∇∙B = 0 2 1c

∇∙D = 0 2 1d

where B = [μ]H ,D = ε0εrE, and

μ =

μ − jκ 0

jκ μ 0

0 0 1

2 2

The formal derivation of plane wave propagation in this medium begins by

forming the wave equation for H . Taking the rotational of Eq. (2.1b), and use
of Eq. (2.1a) gives

∇×∇× H −ω2ε0εrμ0 μ H = 0 2 3

with the alternating magnetic field in the transverse plane

h =

Hx

Hy

0

2 4

It continues by assuming propagation of the form exp (−jβz) with no variation of
the fields in the transverse x–y plane

∇×∇× H = −
∂2

∂z2
H = β2H 2 5

Specializing the wave equation in this situation in the transverse plane gives

β2
Hx

Hy
=ω2ε0εrμ0

μ − jκ

jκ μ

Hx

Hy
2 6
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The roots or eigenvalues of this equation are determined by

μ−
β2

ω2ε0εrμ0
− jκ

jκ μ−
β2

ω2ε0εrμ0

= 0 2 7

or

β2± =ω2ε0εrμ0 μ κ 2 8

Themagnetic fields corresponding to the eigenvalues β2± may now be derived by
introducing β± one at a time into Eq. (2.6). The result is

H ±
y = ± jH ±

x 2 9

In the transverse plane the solution consists of two plane circularly polarized
magnetic waves rotating in opposite directions with propagation constants γ±
and scalar permeabilities μ ± κ. The superscripts or subscripts refer to the sense
of the circular polarization; the plus sign indicating clockwise rotation when
viewed in the direction of propagation and the minus sign anticlockwise rotation.
If the direction of the direct magnetic field is reversed, the propagation con-

stants of the two normal modes are interchanged. This observation can be quite
simply understood by investigating the dependence of μ and κ upon the direction
of the direct magnetic field. This indicates that μ is an even function of the direct
field and κ is an odd function of the direct field. The direction of propagation has
no bearing on the sign of the propagation constants since β appears only as an
even power in Eq. (2.8). Figure 2.1 summarizes the different situations.
The nature of the electric field may be separately deduced by making use of

the first of Maxwell’s two curl equations

x y z

0 0 − jβ

Ex Ey 0

= − jωμ0

μ − jκ 0

jκ μ 0

0 0 1

Hx

Hy

0

2 10

or

jβEy = jωμ0 μHx− jκHy 2 11a

jβEx = jωμ0 jκHx−μHy 2 11b

where for a loss-free medium γ is replaced by jβ. Adopting the boundary con-
dition with the upper sign in Eq. (2.9), readily gives

β +Ey = −ωμ0 μ−κ Hx 2 12a

β +Ex = −ωμ0 μ−κ Hy 2 12b
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This result indicates that the electric field is also circularly polarized in that

Ey = jEx 2 13

and that the wave impedance in such a medium is a scalar quantity described by

Z + =
Ey
−Hx

=
Ex
Hy

=
ωμ0 μ−κ

β +
2 14

Taking the lower sign in Eq. (2.9) indicates that

Ey = − jEx 2 15

and

Z− =
Ey

−Hx
=
Ex
Hy

=
ωμ0 μ+ κ

β−

2 16

μ – κ

H0

μ + κ

H0

μ + κ

H0

μ – κ

H0

Figure 2.1 Schematic diagrams of normal modes
of propagation in longitudinally magnetized ferrite
medium.
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Expressing Eqs. (2.14) and (2.16) in terms of the original variables also indi-
cates that

Z ± =
μ0 μ κ

ε0εr
2 17

To determine the behavior of a linearly polarized electric wave in this type of
gyromagnetic medium, it is sufficient to take a linear combination of the two
circularly polarized waves defined by Eqs. (2.13) and (2.15). This gives

Ey z =
1
2
exp − jβ− z +

1
2
exp − jβ + z 2 18a

Ex z =
j
2
exp − jβ− z −

j
2
exp − jβ + z 2 18b

The preceding equations satisfy the boundary conditions Ey(0) = 1 and Ex(0) = 0.
These may be simplified by taking out a common factor

exp − j
β− + β +

2
z 2 19

The required result is

Ey z = cos
β− −β +

2
z exp − j

β− + β +

2
z 2 20a

Ex z = sin
β− −β +

2
z exp − j

β− + β +

2
z 2 20b

It is readily appreciated that the vector addition of these two quantities produces
a linearly polarized wave rotating with the quantity (β− − β+)/(2z). The angle of
polarization θ is described by

θ =
β− −β +

2
z 2 21

The notation used here is consistent with the fact that β− > β+ below the so-
called ferromagnetic resonance.
This result indicates that a wave propagating a certain distance in one direc-

tion is rotated through an angle θ with respect to the input polarization.When it
is reflected and returns to its starting point it is again rotated by θ. This feature
may be understood by recognizing that the signs of β+ and β− are reversed for
propagation in the –z direction and furthermore, that the phase constants of β±
are separately interchanged.
The total rotation of the reflected wave is therefore 2θ with respect to the out-

going wave, i.e. it is not rotated back to its original orientation. Figure 2.2 illus-
trates the situation for a 90 section. Thus, Faraday rotation is nonreciprocal
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and leads to a number of nonreciprocal devices. Some practical cross-sections
are illustrated in Figure 2.3.
It is also possible to take a linear combination of the normal modes so that

Ex(0) = 1 and Ey(0) = 0. Applying these boundary conditions indicates that

Ey z =− sin
β− −β +

2
z exp − j

β− + β +

2
z 2 22a

Ex z = cos
β− −β +

2
z exp − j

β− + β +

2
z 2 22b

and combining the results given by Eqs. (2.20) and (2.22) gives

Ey z

Ex z
= exp − j

β− + β +

2
z

cos
β− −β +

2
z sin

β− −β +

2
z

− sin
β− −β +

2
z cos

β− −β +

2
z

Ey 0

Ex 0

2 23

If the signals in the two polarizations coincide with one of the normal modes, no
coupling between the two takes place and the outgoing waves will be emergent
in the same mode. Because the prototype is nonreciprocal, the wave will be

H0

H0

Propagation

Propagation

Figure 2.2 Schematic diagrams of
Faraday rotation in positive and
negative directions of
propagation.
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phase-shifted through either β+z or β−z depending upon the direction of the dc
biasing magnetic field.

2.3 Magnetic Variables of Faraday Rotation Devices

The difference and sum of the split-phase constants are given in terms of the
original variables in Eq. (2.8) by

β− −β +

2
=
1
2
ω ε0εrμ0μ 1 +

κ

μ

1 2

− 1−
κ

μ

1 2

2 24

and

β− + β +

2
=
1
2
ω ε0εrμ0μ 1 +

κ

μ

1 2

+ 1−
κ

μ

1 2

2 25

Figure 2.3 Some waveguides
with required symmetry for use
in Faraday rotation devices.
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If κ/μ are appreciably less than unity, then

β− −β +

2
=
1
2
ω ε0εrμ0μ

κ

μ
2 26

β− + β +

2
=
1
2
ω ε0εrμ0μ 2 27

Faraday rotation is therefore proportional to the ratio of the off-diagonal and
diagonal elements of the tensor permeability. The variation of κ/μ as a function
of the direct magnetic field for a finite medium is shown in Figure 2.4.
For a saturated material,

κ =
ωm

ω
2 28a
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Figure 2.4 Variation of κ/μ as a function of direct field. Source: After Fay and Comstock (1965).
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μ≈1 2 28b

and

β− −β +

2
=
1
2
ω ε0εrμ0μωm 2 29a

β− + β +

2
=
1
2
ω ε0εrμ0 2 29b

Faraday rotation in an infinite saturated medium is therefore frequency inde-
pendent; an observation that has been utilized in the construction of octave-
band wide Faraday rotation devices.

2.4 The Gyrator Network

The simplest component that illustrates the nonreciprocal property of a Faraday
rotator is the gyrator circuit. This element is a four-terminal two-port device
that has zero relative phase shift in one direction of propagation and 180 rel-
ative phase shift in the other. It is characterized by the following scattering
matrix:

S =
0 −1

1 0
2 30

The fact that such as circuit is realizable as a lossless network is readily verified
by having recourse to the unitary condition:

STS∗− I = 0

One realization of this network consists of a rectangular waveguide with a 90
twist followed by a 90 Faraday rotator section. The output port is oriented in
the same plane as the input one in the manner indicated in Figure 2.5.
A vertically polarized wave propagating from left to right has its polarization

rotated 90 by the twisted rectangular waveguide and a further 90 by the Far-
aday rotation; it therefore emerges at the output port having being rotated 180
with respect to the input port. A vertically polarized wave propagating in the
opposite direction is rotated by the 90 Faraday rotator in the same sense as
before. In this case, however, the waveguide twist will cancel the Faraday rota-
tion instead of adding to it; the wave therefore displays no rotation in this direc-
tion or propagation. The effective length of this gyrator is an odd integral
number of half wavelength for transmission in one direction and an even num-
ber in the other direction of propagation.
One application of the gyrator network is in the construction of the four-port

differential phase-shift circulator depicted in Figure 2.6.
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This circuit consists of two magic-tee-type power dividers with a gyrator net-
work at the plane of symmetry of one of its two connecting waveguides. The
operation of this device may be readily understood by noting that a signal at
the E-plane port of this network is divided into equal out-of-phase signals at
the two symmetricH-plane ones, whereas a signal at theH-plane port is divided
into equal in-phase signal at the two symmetricH-plane ports. A signal at port 1
of the overall arrangement illustrated in Figure 2.6 therefore is divided into
equal in-phase signals, which recombine at port 2. A signal at port 2 is also

Ferrite

Dielectric

Coil

90° twist

Figure 2.5 Schematic diagram of a gyrator network. Source: After Hogan (1952).
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0°

0°

3

1

∏

Figure 2.6 Four-port differential circulator employing a Faraday gyrator network.
Source: After Hogan (1952).
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divided into equal in-phase signals but due to the additional 180 differential
phase-shift of the gyrator network it recombines at port 3. In a likewise manner,
a signal at port 3 is transmitted to port 4 and one at port 4 is routed to port 1 and
so on in a cyclic manner. Figure 2.7 depicts the schematic diagram of the four-
port circulator.

2.5 Faraday Rotation Isolator

The operation of this type of isolator can be understood with the help of
Figure 2.8. The rotator prototype is matched to the rectangular waveguide at
the two ends by tapers or quarter-wave transformers with round waveguide.

1 3

4

2

Figure 2.7 Equivalent circuit of four-port circulator.

Coil

Ferrite

Dielectric

Resistive vane

Figure 2.8 Schematic diagram of
Faraday rotator isolator. Source:
After Hogan (1952).
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Resistance vanes are inserted into the round waveguide sections in a plane per-
pendicular to the electric fields of the input and output rectangular waveguides.
A signal incident at the input port will be perpendicular to the first resistance
card, and after a clockwise rotation through 45 , will also be perpendicularly
polarized with respect to that at the output port. It will, therefore, be transmitted
without attenuation through the isolator. In the reverse direction, a signal at the
output, vane is likewise perpendicular to that card, but after rotation through
45 in a clockwise sense, will now be in the plane of the input one where it is
attenuated. The wavelength in the transformer section is approximately the
geometric mean of that of the rectangular waveguide and that of the isotropic
round waveguide containing the ferrite rod. This device may also be used as an
amplitude modulator by suitably varying the direct magnetic field.

2.6 Four-port Faraday Rotation Circulator

Another important application of a Faraday section is in connection with the
realization of a four-port Faraday rotation circulator. A schematic diagram of
this device is illustrated in Figure 2.9. In this device, power entering port 1
emerges as port 2, and so on in a cyclic manner. The physical arrangement is
similar to the Faraday rotator isolator except that the sections containing the
resistance vanes are replaced by two-mode transducers. Such transducers allow
orthogonal linearly polarized waves to be applied to the round waveguide

Two-mode transducer

Coil

2

4

3

Ferrite

Dielectric

Metal vane

1

Figure 2.9 Four-port Faraday rotator circulator. Source: After Hogan (1952).
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section. The Faraday rotator is again a 45 section. A wave entering port 1 with
its electric field vertically polarized is rotated clockwise by 45 by the ferrite
rotator and emerges at port 2. A wave entering port 2 is also rotated clockwise
so that its electric field is now horizontally polarized at the input of the first two-
mode transducer. It therefore emerges at port 3. Similarly, transmission occurs
from port 3 to port 4, port 4 to port 1, and so on. This device may also be used as
a switch by reversing the direction of the direct magnetic field.

2.7 Nonreciprocal Faraday Rotation-type Phase Shifter

It has already been noted in connection with Eq. (2.23) that if the input excita-
tion to the Faraday rotation section corresponds to one of its normal modes, no
Faraday rotation will occur. Instead, the wave travels in the same normal mode
through the rotator section, but phase-shifted through either β+z or β−z radians.
This principle can be used to design nonreciprocal or reciprocal ferrite phase
shifters in conjunction with reciprocal or nonreciprocal quarter-wave plates.
One such nonreciprocal device will now be described. A nonreciprocal phase
shifter is illustrated in Figure 2.10. The arrangement uses two reciprocal quar-
ter-wave plates at either end of the Faraday rotation section. The first quarter-
wave plate converts a linearly polarized input wave into a positive circularly
polarized wave at the input of the rotator section. This wave is then phase-
shifted through β+z radians in the rotator section.

Coil

Quarter-wave plate

Quarter-wave plate

Ferrite

Dielectric

Figure 2.10 Nonreciprocal Faraday rotator phase shifter.
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The phase-shifted circularly polarized wave is reconverted to a linearly polar-
ized wave at the output by the second quarter-wave plate. In the reverse direction
of propagation the circularly polarized wave is in the opposite sense and the wave
is therefore phase-shifted through β−z. The arrangement therefore behaves as a
nonreciprocal phase shifter. A forward wave can of course also be switched from
β+z to β−z by reversing the dc magnetic field on the rotator section.

2.8 Coupled Wave Theory of Faraday Rotation Section

Treating the rotator section as a four-port nonreciprocal direction coupler indi-
cates that the entries of its scattering matrix with an input at port 1 may be
expressed in terms of the properties of the counterrotating reflection ρ± and
transmission τ± variables of the system by

S11 =
ρ− + ρ+

2
2 31a

S12 =
ρ− −ρ+

−2j
2 31b

S13 =
τ− + τ +

2
2 31c

S14 =
τ− −τ +

2j
2 31d

If the magnetized line is matched to the demagnetized one by a stepped imped-
ance transformer, the reflection coefficients ρ± are given by

ρ± =
−β0 + β ±

β0 + β ±
2 32

The transmission coefficients τ± are given in the usual way by

τ ± = 1−ρ± ρ∗± exp − jβ ± ℓ 2 33

It is readily verified that Eqs. (2.31a)–(2.31d) satisfy the unitary condition:

S11S
∗
11 + S12S

∗
12 + S13S

∗
13 + S14S

∗
14 = 1 2 34

For symmetric splitting Eqs. (2.31a)–(2.31d) become

S11 = 0 2 35a

S12 j
β− −β +

2β0
2 35b

S13 = 1−
β− −β +

2β0

2

cos
β− −β +

2
ℓ exp − jβ0ℓ 2 35c
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S14 = 1−
β− −β +

2β0

2

sin
β− −β +

2
ℓ exp − jβ0ℓ 2 35d

which also satisfies the unitary condition.
This result suggests that in a four-port nonreciprocal network, matching port

1 is not sufficient to decouple port 2. This feature is of course well understood.
In order to decouple port 2 from port 1 by at least 20 dB, it is necessary to have

β− −β +

2β0
≤ 0 10 2 36

This result places an upper bound on the normalized splitting and a lower
bound on the overall length of the device. If the splitting is not symmetric,
Eqs. (2.35a) and (2.35b) do not apply and the outputs at port 3 and 4 combine
as an elliptically polarized wave instead of as a linearly polarized one.

2.9 The Partially Ferrite-filled Circular Waveguide

The geometry of a practical Faraday rotation section usually consists of a ferrite
rod inside a circular waveguide filled by a suitable dielectric material. The geom-
etry considered here is shown in Figure 2.11 where a is the radius of the circular
waveguide and b is the radius of the ferrite rod. Its mode spectrum has been
extensively investigated by Waldron in a number of classic papers.
Figure 2.12 depicts the split phase constants of one solution.

b

a

ϵ1

Ferrite rod

Circular waveguide

ϵ2

l

Figure 2.11 Circular waveguide containing a coaxial ferrite cylinder.
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3

Circular Polarization in Parallel Plate Waveguides
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

A circular polarized spinning electron under the influence of a direct magnetic
field and an alternating radio frequency magnetic field display two different sca-
lar permeabilities depending upon whether the alternating radio frequency field
is circularly polarized in the same sense as that of the electromagnet spin or not.
This property of a magnetized ferrite medium is the basis of some of the most
important nonreciprocal devices described to date. Identifying such planes of
circular polarization in practical microwave circuits or establishing them by
one mean or another is therefore an essential part of the development of prac-
tical ferrite phase shifters. Situations in which the rotation of these waves is dif-
ferent in the two directions of propagation are of course of special interest. Such
polarization is defined by two equal vectors in space quadrature with one or the
other in time quadrature. Counterrotating magnetic fields occur in fact natu-
rally on either side of the symmetry plane of an ordinary rectangular waveguide
propagating the dominant TE mode: at the interface and everywhere outside
two different dielectric regions. Furthermore, in each instance, the hand of rota-
tion is interchanged if the direction of propagation is reversed. The subject of
circular polarization in round waveguides is the topic of Chapters 5, 7, and 8.

3.1 Circular Polarization in Rectangular Waveguide

Natural regions of circular polarization may be found in a rectangular wave-
guide propagating the dominant TE10 mode. This feature is particularly impor-
tant as a number of nonreciprocal ferrite devices rely on this type of polarization
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for their operation. It can be demonstrated quite simply by first forming the
three field components for the waveguide in Figure 3.1.

Hz = cos
πx
a

∙exp∙ − jβzz 3 1

Hx = j
λc
λg

sin
πx
a

∙exp∙ − jβzz 3 2

Ey = − j
λc
λ0

μ0
ε0
∙ sin

πx
a

∙exp∙ − jβzz 3 3

where propagation is assumed along the positive z direction (Figure 3.2). If it is
in the negative z direction the terms involving the λg are reversed (Figure 3.3).
In the above equations

λc = 2a 3 4

2π
λg

2

=
2π
λ0

2

−
2π
λc

2

3 5

βz =
2π
λg

3 6

It is observed from these equations thatHx andHz are in time space quadrature.
If a region can now be located where their amplitudes are also equal it would
exhibit circular polarization. This condition is in fact met on either side of
the center line of the waveguide provided.

tan
πx
a

=
λg
λc

3 7

The polarizations along such a waveguide are in opposite directions on either
side of the center line of the waveguide. Furthermore, their hands are reversed,
provided propagation is taken along the negative z-axis instead of the posi-
tive one.

Waveguide

z

y

Figure 3.1 Schematic diagram of a rectangular waveguide.
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3.2 Circular Polarization in Dielectric Loaded Parallel
Plate Waveguide with Open Sidewalls

Dielectric loaded parallel plate waveguides with open sidewalls or with electric
or magnetic sidewalls all support, under appropriate boundary conditions,
planes of circular polarization at the boundaries between the dielectric and
air regions. The configuration treated in this section is the open sidewall
arrangement in Figure 3.4. In this situation the fields decay exponentially out-
side the dielectric region and the ratio of the transverse to longitudinal compo-
nents of the r.f. magnetic field at the interface between the two dielectric regions
and everywhere outside is readily given by

Hx

Hz
=

− j

1− k20 β2z

3 8

k0 is the free space constant and βz is that along the structure.
To maintain the ellipticity below 1.05 (say) it is necessary to have

βz
k0

≥ 3 3 9

Forming βz/k0 in the 2–4 GHz band for a dielectric slab with εr = 9, using the
data given later in this chapter, gives

1 8≲
βz
k0

≲ 2 2 3 10

and the corresponding ellipticity over the same frequency interval is

1 20 ≥
Hx

Hz
≥ 1 12 3 11

The derivation of this result starts by developing the field components of the
TE family of modes in the three regions of dielectric loaded parallel plate
waveguide with open sidewalls in Figure 3.4. The solutions are labeled even
or odd according to whether an electric or magnetic wall can be introduced
along the place of symmetry at x = a. The dominant mode in such a waveguide
is the so-called even one with no low frequency cutoff condition. The deriva-
tion proceeds from first principles in order to familiarize the reader with this
class of boundary value problem, which will be met again in a number of
related situations.
Maxwell’s equations in differential form for a charge-free region (ρ = 0) are

given by

∇×E = −μ0
δH
δt

3 12
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∇×H = ε0
δE
δt

3 13

∇∙D= 0 3 14

∇∙B= 0 3 15

H is the magnetic field (Am−1), E is the electric field (Vm−1), μ0 is the free space
permeability (4π × 10−7 H m−1), ε0 is the free space permittivity (1/36π ×
10−11 F m−1), D= ε0E, and B= μ0H .
In transmission line theory it is usual to assume that all the fields vary in the

positive z direction as

exp −γz 3 16

γ is a complex quantity known as the propagation constant

γ= α+ jβ 3 17

α is the attenuation constant per unit length (nepers m−1), and β is the phase
constant (rad m−1).
It is also usual to describe the time variation as

exp jωt 3 18

In what follows, it is therefore only necessary to determine the variation of the
fields in the transverse x–y plane.
Solutions to Maxwell’s equations may be catalogued according to whether

Ez =Hz = 0, TEM 3 19

Ez 0, Hz = 0, TM 3 20

Ez = 0, Hz 0, TE 3 21

Ez 0, Hz 0, HE 3 22

Waveguide
Dielectric

x

y
z

o a–a

Figure 3.4 Schematic diagram of dielectric loaded parallel plate waveguide with open
sidewalls.
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The first of these solutions is encountered in two wire systems or coaxial lines,
the second and third class of solutions are met in the description of hollow pipes
having rectangular, triangular, circular, and elliptical cross-sections and in some
parallel plate waveguides with magnetic sidewalls. The fourth type of solution is
met in the description of propagation in partially loaded dielectric waveguides
or open dielectric waveguides and in ferrite-loaded transmission lines.
If Ez or Hz exist, it is possible to derive all the other fields from them.
Introducing Eqs. (3.16), (3.18), and (3.21) into Eqs. (3.12) and (3.13) and

taking

Ex = Ez =Hy = 0 3 23

δ

δy
= 0 3 24

leads to

ix iy iz
δ

δx
0 −γ

0 Ey 0

= − jωμ0

Hx

0

Hz

3 25

or

γEy = − jωμ0Hx 3 26

δEy
δx

= − jωμ0Hz 3 27

Likewise

ix iy iz
δ

δx
0 −γ

Hx 0 Hz

= jωε0

0

Ey

0

3 28

gives

δHz

δx
+ γHx = − jωε0Ey 3 29

Making use of the two divergence relationships in Eqs. (3.14) and (3.15) yields

δEy
δy

= 0 3 30

and

δHx

δx−γHz = 0
3 31
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in keeping with δ/δy = 0 and Ex = Ez = Hy = 0.
Hx and Ey are now written in terms ofHz using the appropriate curl equations.

Hx =
−γ

γ2 +ω2μ0ε0

δHz

δx
3 32

and

Ey =
− jμ0ω
λ

Hx 3 33

Hx and Ey may now be formed once Hz has been determined. This is done by
satisfying the wave equation using the second divergence equation in Eq. (3.31).
The result is

δ2Hz

δx2
+ γ2 +ω2μ0ε0 Hz = 0 3 34

One solution to this equation in the dielectric region with

γ jβz 3 35

ε0 ε0ε1 3 36

is

Hz =A sin k1x ∙exp − jβzz 3 37

which satisfies the wave equation with

−k21 + −β2z +ω
2μ0ε0ε1 = 0 3 38

and the magnetic wall boundary condition at the symmetry plane of the dielec-
tric region for the coordinate system employed in Figure 3.4. The other field
components in region 1 are now readily constructed in terms of Hz as

Hx =
− jβz
k1

Acos k1x ∙exp − jβzz 3 39

Ey =
jμ0ω
k1

Acos k1x ∙exp − jβzz 3 40

A suitable decaying solution in region 2 in keeping with the open wall boundary
condition adopted for this region at x = −∞ is

Hz =B∙exp k2 a+ x − jβzz 3 41

which satisfies the wave equation with

k22 + −β2z +ω
2μ0ε0 = 0 3 42
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The constant B is determined by noting that Hz must be continuous at the
boundary between the two regions

B= −A sin k1a 3 43

The complete solution in region 2 is therefore described by the wave equation in
Eq. (3.42) and by

Hz = −A sin k1a ∙exp k2 a+ x − jβzz 3 44

Hx =
− jβz
k2

A sin k1a ∙exp k2 a+ x − jβzz 3 45

Ey =
jμ0ω
k2

A sin k1a ∙exp k2 a+ x − jβzz 3 46

The solution in region 3 has the same form as the one in 2 but with the sign ofHz

reversed:

Hz =A sin k1a ∙exp k2 a−x − jβzz 3 47

Hx =
− jβz
k2

A sin k1a ∙exp k2 a−x − jβzz 3 48

Ey =
jμ0ω
k2

A sin k1a ∙exp k2 a−x − jβzz 3 49

and satisfies the same wave equation as the one in region 2.
The magnetic field is therefore elliptically polarized with one hand of rotation

everywhere in region 2

Hx

Hz
=
− jβz
k2

3 50

and the one in region 3 is elliptically polarized with the other hand of rotation as
asserted

Hx

Hz
=
− jβz
k2

3 51

For completion, it is now necessary to evaluate βz and the field patterns of the
structure. This may be done by first noting that the propagation constant βz
must be the same in each region

−k22 +ω
2μ0ε0 = −k21 +ω2μ0ε0ε1 3 52

and furthermore noting that the electric field Ey must be continuous across the
two regions. Applying this boundary condition gives

k2 = k1 tan k1a 3 53
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The preceding two relationships may now be employed to evaluate k1a and k2a
for parametric values of ε1 and ω2μ0ε0 and either separation constant may be
employed with the appropriate wave equation to determine βz. A knowledge
of these three parameters is sufficient to construct the field patterns of the wave-
guide. Figure 3.5 depicts one result and Figure 3.6 illustrates the relationship
between βz/k2 and ε1 ka .

E lines
H lines

(a)

y

x

z

x
(b)

++++ +++ + + + +
(c)

1.0

0.5

0

F
ie

ld
 in

te
ns

ity
 (

ar
bi

tr
ar

y 
un

its
)

–0.5

2a x

Hz

Hx

Ey

3aa–3a –2a 0–a

Figure 3.5 (a–c) Electric and magnetic fields of dielectric-loaded parallel plate waveguide
with open sidewalls (dominant even mode solution) (Cohn 1959).
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The derivation of the second family of TE solutions for which the introduc-
tion of an electric wall at the plane of symmetry leaves the solution unperturbed
is outside the remit of this chapter. However, Figure 3.7 depicts one result. It is
in fact the next higher-order mode of this class of waveguide.
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Figure 3.6 Relationship between β/k and ε1 k1a (Anderson and Hines 1961).
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x

Figure 3.7 (a–c) Electric and magnetic fields of dielectric-loaded parallel plate waveguide
with open sidewalls (dominant odd mode solution) (Cohn 1959).
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4

Reciprocal Quarter-wave Plates in Circular Waveguides
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

Standard circular waveguide propagating the dominant TE mode supports
degenerate counterrotating circularly polarized magnetic fields along its axis
which may be split by the introduction of a suitably magnetized ferrite material,
giving rise to so-called Faraday rotation of the polarization of the mode. How-
ever, if the incident magnetic field is clockwise or anticlockwise polarized, then
it will be either phase advanced or retarded. Mode transducers or quarter-wave
plates are therefore important building blocks in the design of ferrite phase-
shifters and control devices. The purpose of this chapter is to describe the prin-
ciple of one class of reciprocal quarter-wave plate, which may be used to imple-
ment a number of different control devices. Such plates convert a linearly
polarized wave to either clockwise or anticlockwise circularly polarized ones.
Its operation may be phenomenologically understood by decomposing the inci-
dent wave into equal orthogonal components and phase-shifting one or the
other of them by 90 with respect to the other. It may also be interpreted by
using coupled wave theory and this is the approach used here. The theory of
nonreciprocal quarter-wave plates is left for a later chapter.
An equivalent waveguide model is separately employed to form the effective

dielectric constants of the two polarizations from the experimental knowledge
of the waveguide and free space wavelengths and the radius of the circular wave-
guide. This model allows the bandwidth of the plate to be estimated and also
permits the results to be extrapolated to other waveguide bands. Some remarks
about the optimum length of quarter-wave plates are included for complete-
ness. The matching problem of different inhomogeneous waveguide sections
met, for instance, in the design of Faraday rotation devices, is facilitated if equiv-
alent waveguide models are defined for each different waveguide section.
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The theory of the half-wave plate and the rotary vane phase-shifter are included
for completeness.

4.1 Quarter-wave Plate

The notion of horizontal or vertical linear polarization is well established. How-
ever, such polarizations may be regarded as limiting cases of elliptical polariza-
tion. Clockwise and anticlockwise circular polarizations are the other limiting
forms. Many systems and microwave components, as already noted, rely on this
type of polarization. One common type of birefringence that is suitable for the
design of a circular polarizer or quarter-wave plate consists of a sheet of dielec-
tric material at ±π/4 rad in the x and y axis of a circular waveguide as indicated in
Figure 4.1.

1 2

4

2b

2a

Y

X

εoε

εo

εo

π

Figure 4.1 Schematic diagram of
quarter-wave plates using partially filled
circular waveguides.
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If a vertically polarized wave is introduced into such a waveguide, it will have
equal components normal and tangential to the dielectric vane which will prop-
agate with different velocities βn and βt along the waveguide. The phase constant
of the component normal to the dielectric sheet remains essentially unper-
turbed while that tangential to it increases. The output wave will be circularly
polarized, provided its length ℓ is adjusted such that

βt−βn ℓ = ±
π
2

4 1

The quarter-wave plate is a four-port network for which a scattering matrix is
readily obtained by inspection from the schematic diagram in Figure 4.2.
The result for the port nomenclature in Figure 4.2 is

S =

0 0

0 0

1 0

0 − j

1 0

0 − j

0 0

0 0

4 2

At the output, port 3 corresponds to port 1 and port 4 to port 2. Ports 1 and 2
form a right-banded system with the direction of propagation.
In obtaining this matrix it has been assumed that (i) the network is matched

so that the main diagonal is zero, (ii) it is reciprocal so that the matrix is sym-
metrical about the main diagonal, (iii) all ports are decoupled except ports 1
and 3, and 2 and 4, and (iv) there is a π/4 differential phase-shift between
ports 3 and 4.
If a linearly polarized wave is now incident on the device with its polarization

at 45 to ports 1 and 2, the outgoing waves are obtained by forming the following
input/output relationship:

Circular waveguide

Dielectric vane

Port 1

Port 2

Port 3

Port 4

Figure 4.2 Schematic diagram of quarter-wave plate showing port nomenclature.
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b1
b2
b3
b4

=

0 0

0 0

1 0

0 − j

1 0

0 − j

0 0

0 0

1 2

1 2

0

0

4 3

The results is

b1 = 0 4 4

b2 = 0 4 5

b3 =
1

2
4 6

b4 =
− j

2
4 7

If the dielectric vane is rotated by 90 with respect to its position in Figure 4.2,
S13 and S14 are interchanged and the input/output relation of the network
becomes:

b1
b2
b3
b4

=

0 0

0 0

− j 0

0 1

− j 0

0 1

0 0

0 0

1 2

1 2

0

0

4 8

The results is

b1 = 0 4 9

b2 = 0 4 10

b3 =
− j

2
4 11

b4 =
1

2
4 12

and the output wave at ports 3 and 4 is now circularly polarized in the opposite
direction. Table 4.1 summarizes the different possibilities.
If two similar quarter-wave plates are cascaded, a vertically polarized wave

incident on the first plate is converted to a horizontal one at the output
plate, i.e. a linearly polarized wave is rotated by twice the angle between
the input and the plate orientations. However, if one plate of each type is
connected in tandem the polarization at the output plate is the same as that
at the input.
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4.2 Coupled Mode Theory of Quarter-wave Plate

In the coupled wave model of the quarter-wave plate to be described, the port
nomenclature employed in Figure 4.2 is rotated by 45 as illustrated in
Figure 4.3 and two coupled waves each polarized at 45 to the dielectric sheet
are defined at both the input and output terminals of the device. The scattering
matrix is now formed at these new rotated ports in terms of two normal modes;
one consisting of two equal in-phase waves in-space quadrature with the phase
constant of the wave polarized normal to the dielectric sheet and the other

Table 4.1 Input and output polarizations with quarter-wave plates.

≡

≡

≡

≡

45°

Device Input

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

CCP

CCP

CCP

+90°

+90°

+90°

+90°

+90°

+90°

+90°

+90°

+90°

+90°

+90°

+90°

ACP

ACP

ACP

Output polarization

Device Input Output polarization

45°

CCP

CCP

CCP

ACP

ACP

ACP
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consisting of two equal out-of-phase waves in-space quadrature with the phase
constant of the dielectric sheet. The nature of these normal modes may be
derived by decomposing a vertically polarized wave at port 1 (say) into compo-
nents normal and parallel to the dielectric sheet and thereafter individually
decomposing each of them back along the coupled ports (see Figure 4.3).
The scattering matrix is now constructed in terms of the phase constants and

reflection coefficients of these in-phase and out-of-phase in-space quadrature
normal modes by taking the components of each one at a time as the input
waves of the quarter-wave plate and constructing the output ones. It is readily
appreciated that the quarter-wave plate has fourfold symmetry so that its scat-
tering matrix may be written as

S =

S11 S12

S12 S11

S13 S14

S14 S13
S13 S14

S14 S13

S11 S12

S12 S11

4 13

y

y

x

x

βt

βnϵn, βn

βn

βt

ϵt, βt

Figure 4.3 Construction of
normal modes of a quarter-
wave plate.
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The above scattering matrix assumes that the device is reciprocal and sym-
metrical, but no assumption is made about the boundary conditions of the quar-
ter-wave plate.
For the in-phase in-space quadrature normal mode with propagation con-

stant βt, the input/output relationship of the quarter-wave plate is

b1

b2
b3

b4

=

S11 S12

S12 S11

S13 S14

S14 S13
S13 S14

S14 S13

S11 S12

S12 S11

1 2

1 2

0

0

4 14

Expanding the above matrix relationship gives

b1 =
S11 + S12

2
4 15

b2 =
S11 + S12

2
4 16

b3 =
S13 + S14

2
4 17

b4 =
S13 + S14

2
4 18

In-phase in-space quadrature mode reflection ρt and transmission τt coeffi-
cients may now be defined for each waveguide or polarization as

ρt =
b1
a1

=
b2
a2

= S11 + S12 4 19

τt =
b3
a1

=
b4
a2

= S13 + S14 4 20

Since there is no coupling between the orthogonal polarizations for this set of
incident waves, the coupled waveguides may be replaced by a single waveguide
with an in-phase in-space quadrature field pattern with parameters τt and ρt and
propagation constant βt.
For the out-of-phase in-space quadrature mode excitation with propagation

constant βt, the input/output relation of the network becomes

b1

b2
b3

b4

=

S11 S12

S12 S11

S13 S14

S14 S13
S13 S14

S14 S13

S11 S12

S12 S11

1 2

−1 2

0

0

4 21
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Thus,

b1 =
S11−S12

2
4 22

b2 =
−S11 + S12

2
4 23

b3 =
S13−S14

2
4 24

b4 =
−S13 + S14

2
4 25

Out-of-phase in-space quadrature reflection ρn and transmission τn coeffi-
cients for each waveguide are in this case defined by

ρn =
b1
a1

=
b2
a2

= S11−S12 4 26

τn =
b3
a1

=
b4
a2

= S13−S14 4 27

The reflection and transmission coefficients are again identical for each polar-
ization so that the four-port network may be once more replaced by a two-port
one but with constitutive parameters ρn, τn, and βn. Taking linear combinations
of these two solutions gives

S11 =
ρt + ρn

2
4 28

S12 =
ρt−ρn
2

4 29

S13 =
τt + τn
2

4 30

S14 =
τt−τn
2

4 31

The entries of the scatteringmatrix are therefore linear combinations of ρn, ρt,
τn, and τt. A knowledge of these quantities is therefore sufficient to characterize
the quarter-wave plate.
It is apparent from Eqs. (4.28) and (4.29) that an ideal quarter-wave plate

requires

ρt = ρn = 0 4 32

It is thus necessary to separately match both normal modes of the system.
If the quarter-wave plate is matched to the input and output waveguides with

phase-constants β0 by a stepped impedance transformer, the reflection coeffi-
cients ρn,t may be expressed in terms of ρ0, ρn, and βt as

ρt =
−β0 + βt
β0 + βt

4 33
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ρn =
−β0 + βn
β0 + βn

4 34

The transmission variables τt,n may be defined in terms of the propagation
constants βt,n and the reflection coefficients ρt,n by

τt = 1−ρtρ
∗
t

1 2
exp − jβp l 4 35

τn = 1−ρnρ
∗
n

1 2
exp − jβn l 4 36

It is readily verified that Eqs. (4.28)–(4.31) satisfy the unitary condition:

S11S
∗
11 + S12S

∗
12 + S13S

∗
13 + S14S

∗
14 = 1 4 37

For symmetric splitting Eqs. (4.28)–(4.31) become

S11≈0 4 38

S12≈ j
βt−βn
2β0

4 39

S13≈ 1−
βt−βn
2β0

2
1
2

cos
βt−βn

2
l exp − jβ0 l 4 40

S14≈ j 1−
βt−βn
2β0

2
1
2

sin
βt−βn

2
l exp − jβ0 l 4 41

which also satisfies the unitary condition.
This result suggests that in a four-port reciprocal network, matching port

1 is not sufficient to decouple port 2. This feature is of course well under-
stood. In order to decouple port 2 from port 1 by at least 20 dB it is neces-
sary to have

βt−βn
2β0

≤ 0 10 4 42

This condition places an upper bound on the normalized splitting of the nor-
mal-mode phase constants and a lower bound on the overall length of the
device.
The wave at ports 2 and 3 is circularly polarized, provided

βt−βn l
2

=
π
4

4 43

in keeping with Eq. (4.1).
If the splitting is not symmetric, Eqs. (4.4) and (4.41) do not apply and the

outputs at ports 3 and 4 combine as an elliptically polarized wave instead of
a circularly polarized one.
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4.3 Effective Waveguide Model of Quarter-wave Plate

The description of an inhomogenous waveguide partially filled by some dielec-
tric material is often facilitated by forming an equivalent waveguide model con-
sisting of a homogenous waveguide having the same cross-section but fully filled
by an effective relative dielectric constant. Such a model is useful for matching
purposes and for estimating the frequency characteristic of the inhomogenous
waveguide. Figure 4.4 illustrates this equivalence for the two orientations of the
quarter-wave plate in Figure 4.1.
The relationship between the waveguide wavelength (λg,n,p), the free space

wavelength (λ0), the radius of the waveguide R, and the effective relative dielec-
tric constants (εn,p) of the two equivalent waveguides is defined in the absence of
fringing by

2π
λg,n,p

2

=
2π
λ0

2

εn,p−
1 84
R

2

4 44

The equivalent waveguide model employed here is of course also appropri-
ate for use with the three different definitions of impedance in circular wave-
guide. It assumes, however, that the radius of the equivalent waveguide is the
same for the two waveguides. The equivalence between the two is therefore
exact at a single frequency. In order to cater for frequency effects, it is strictly

εo

εoε

εoε εoε⫽

εo

εoε⟘ Figure 4.4 Equivalence
between inhomogenous
and homogenous circular
waveguides.
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necessary to adopt an equivalent radius as well as an effective dielectric
constant.
The effective relative dielectric constants can be determined in terms of the

phase constant (β0) of the matching waveguides and the required differential
phase-shift. Solving Eq. (4.44) for εt and εn leads to

εt =
β20 + k2c + Δβ 2 + 2β0 Δβ

k20
4 45

εn =
β20 + k2c + Δβ 2−2β0 Δβ

k20
4 46

4.4 Phase Constants of Quarter-wave Plate Using
the Cavity Method

If an equivalent waveguide model is also adopted for the rotator section, k0, kc,
and β0 of the quarter-wave plate in Eqs. (4.45) and (4.46) are fixed by the cor-
responding parameters of the rotator section. It now only remains to determine
the relationship between the effective dielectric constants of the two polariza-
tions and the details of the quarter-wave plate. This may be done by incorpor-
ating the inhomogeneous waveguide into a half-wave long undercoupled cavity
resonator and forming an experimental relationship between its resonance fre-
quency, the length of the cavity, and the transverse parameters of the plate. The
definition of such a resonator is indicated in Figure 4.5.
The orthogonal phase constants from which the effective dielectric constants

may be evaluated are given in terms of the length lt,n of the resonator by

R
es

on
an

t f
re

qu
en

cy
 (

G
H

z)

Under coupled

Critically coupled

Power absorbed

Increasing slot length

Over coupled

Power absorbed (dB)

Figure 4.5 Sketch of power
absorbed versus resonant
frequency for undercoupled
critically coupler and
overcoupled cavity resonator.
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βt,n =
2π
λg,t,n

=
π
lt,n

4 47

To cater for possible dispersion effects this relationship should, strictly speak-
ing, be formed at the design frequency of the device. Figures 4.6 and 4.7 display
the two effective dielectric constants of the polarizer versus that of the plate for
parametric value of H/R. This result may be used for design as outlined below.
Taking the following entries based on the equivalent waveguide model in

Figure 4.4 or a Faraday rotator section described in Chapter 2 as an example,

k0 = 0 1962radmm−1

kc = 0 2968radmm−1

ε+11

10

9

8

7

6

5

4

3.57

3

2

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

1 2 3 4 5 6 7 8 9 10 11

0

εr
Data base for ε⊥

t/a Figure 4.6 Effective dielectric
constants of round waveguide
with polarization
perpendicular to dielectric
vane versus εr for parametric
values of H/R.
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β0 = 0 3317radmm−1

Δβ = 0 0663radmm−1

l0 = 23 6660mm

gives

εt = 5 7750

εn = 4 6324

n

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7
Data base for ε⫽

8 9 10 11 12

4.73

εr

ε⫽ 1.0

0.8

0.6

0.5

0.4

0.3

t/a

0

Figure 4.7 Effective dielectric constants of round waveguide with polarization parallel to
dielectric vane versus εr for parametric values of H/R.
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The required variables εr and H/R are now determined graphically as indi-
cated in Figures 4.6 and 4.7:

εr = 6 1

H
R
= 0 40

The effective dielectric constant of the equivalent waveguide model of the
rotor section with k0, kc, and β0 noted above is

εeff = 5 1451

4.5 Variable Rotor Power Divider

One application of the half-wave plate is in the construction of a mechanical
variable coupler or power divider. It consists of a rotatable half-wave plate
between two-mode transducers. The operation of the half-wave plate is illus-
trated in Figure 4.8. The two-mode transducer is a four-port network, which
connects orthogonal TE11 modes in a round waveguide to rectangular wave-
guides propagating the dominant TE10 mode. A vertically polarized input wave
in the round waveguide of this network is emergent in the rectangular wave-
guide which support the same polarization; a horizontally polarized wave in
the round waveguide is reflected by a suitably located septum to the other rec-
tangular waveguide. The operation of this latter transmission path may be
understood by recognizing that it is always possible to achieve perfect transmis-
sion between any two ports of a three-port lossless network by terminating the
third one by a suitable short-circuit termination. The network is of course

90–θ 90–θ

90–θθ
θ

θ
θ

Figure 4.8 Input and output waves on half-wave plate with θ = π/4.
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reciprocal, so that the input wave at the rectangular waveguide is emergent at
the corresponding ports in the circular waveguide. The operation of the overall
network is noted without further ado by recalling that the polarization of a lin-
early polarized wave is rotated in traversing the plate by twice the angle of the
plate orientation. A standard variable rotor phase shifter is depicted in
Figure 4.9. The first quarter-wave plate converts a vertically polarized wave into
a circularly polarized wave which is phase shifted through an angle 2θ; the sec-
ond converts the latter wave back to linear polarization.
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5

Nonreciprocal Ferrite Quarter-wave Plates
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

5.1 Introduction

A nonreciprocal phase-shifter may be constructed by placing a Faraday rotation
section between two reciprocal quarter-wave plates. Reciprocal ferrite phase-
shifters may, however, be realized by utilizing nonreciprocal, instead of recip-
rocal, quarter-wave plates. The purpose of this chapter is to describe such as
a plate based on the birefringence displayed by a magnetic insulator with the
direct magnetic field intensity perpendicular to the direction of propagation.
This type of waveguide is characterized by orthogonal linearly polarized normal
modes and counterrotating circularly polarized coupled modes. It is therefore
birefringent for orthogonal modes. Another type of plate makes use of a suitably
longitudinally magnetized ferrite-filled elliptical waveguide in which the normal
modes are counterrotating circularly polarized and the coupled modes are
orthogonal linearly polarized. These two possible quarter-wave plates are there-
fore dual. The chapter includes a description of a number of reciprocal and non-
reciprocal phase-shifters utilizing Faraday rotation and birefringent sections
between reciprocal and nonreciprocal quarter-wave plates. A quarter-wave
plate using a hexagonal ferrite with planar anisotropy is separately described.

5.2 Birefringence

The situation in which the direction of the direct magnetic field intensity is
along the y-coordinate and that of propagation is in the z-direction proceeds
by forming the wave equation with
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∂

∂z
= −γ 5 1

∂

∂x
=

∂

∂y
= 0 5 2

and

μ=

μ 0 − jκ

0 1 0

jκ 0 μ

5 3

The characteristic equation is here given by

μ−
γ2

ω2εrε0μ0
0 − jκ

0 1−
γ2

ω2εrε0μ0
0

jκ 0 μ

= 0 5 4

A wave with its polarization parallel to the direct magnetic field propagates
with a propagation constant given by

β211 =ω2εrε0μ0 5 5

and therefore exhibits a relative permeability

μ11 = 1 5 6

It is therefore unaffected by the electron spin.
Waves polarized perpendicular to the direction of the direct magnetic field

have propagation constants given by

β2⊥ =ω2εrε0μ0μ⊥ 5 7

The effective permeability in this instance is described by

μ⊥ = μeff =
μ2−κ2

μ
5 8

The variation of μeff for a finite medium is indicated in Figure 5.1 as a function
of the direct magnetic field.
μ11 is larger than μ⊥ so that the phase velocity associated with the latter per-

meability is less than that connected with the former one. Consequently, as in
optics, the parallel wave is sometimes referred to as the ordinary wave and the
perpendicular one as the extraordinary wave. The differential phase-shift per
unit length between the two waves is

β11−β⊥ =ω εrε0μ0 1−μeff 5 9a
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β11−β⊥≈
1
2
ω εrε0μ0κ

2 5 9b

provided the material is saturated. This result is derived by noting that for a sat-
urated material

μ= 1 5 10

κ =
ωm

ω
5 11

One application of this birefringence is in the construction of nonreciprocal
quarter- and half-wave plates.

5.3 Nonreciprocal Quarter-wave Plate Using the
Birefringence Effect

The principle of one quarter-wave plate in square waveguide is illustrated in
Figure 5.2. A horizontally polarized TE11 mode in this square waveguide has

4
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1
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–4

NzP
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μ e
ff

P=0.6
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P=1.0
P=0.8
P=0.6

P=0.4

P=0.2 P=0.4
P=0.2

Figure 5.1 Variation of μeff as a function of the direct magnetic field intensity.
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its magnetic field parallel to the direct magnetic field and displays a relative per-
meability of unity. A similar vertically polarized mode in this same waveguide
has a component of its magnetic field perpendicular to the direct magnetic field
and therefore exhibits a relative permeability μeff. If both modes are established
simultaneously in such a waveguide, then the two will be in time–space quad-
rature, provided

β10−β10 ℓ

2
=
π
4

5 12

The port nomenclature of the arrangement in question is separately illus-
trated in Figure 5.2. The quadruple coil geometry is also shown in this diagram.
The decomposition of a typical input wave at one port into orthogonal TE01 and
TE10 modes is indicated in Figure 5.3. Figure 5.4 depicts the coil arrangement
met in connection with a circular waveguide and Figure 5.5 depicts some pos-
sible geometries using ferrite tiles.
One semiempirical relationship due to Boyd for the differential phase per unit

length of the square waveguide in Figure 5.2 is

N

N

S S

2

4

3

1

Figure 5.2 Schematic diagram of
square birefringent waveguide
showing quadrature magnetic
coil arrangement.
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= +

TE01 TE10

Figure 5.3 Linear combination of TE10 and TE01 in square waveguide.

Circular waveguide

Ferrite

N

N

S S

Figure 5.4 Schematic diagram
of round birefringent
waveguide showing
quadrature magnetic coil
arrangement.

Ferrite tube
N

H0

N

S

S

Figure 5.5 Schematic diagrams of round
birefringent waveguides using ferrite slabs.
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Δϕ

ϕ0
≈
4
π
fc
f
κ

μ
5 13

where fc is the cutoff frequency of the waveguide, f is the operating frequency, κ
and μ are the elements of the permeability tensor, and ϕ0 is the insertion phase
of a uniform transmission line embedded in a ferrite medium.

(a) (c)

(b) (d)

N

N

SS

Figure 5.6 (a–d) Equivalent
circuits of nonreciprocal
quarter-wave plate.
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5.4 Circulator Representation of Nonreciprocal
Quarter-wave Plates

One possible equivalent circuit of the birefringent or nonreciprocal quarter-
wave plate is a four-port circulator. A vertically polarized signal, say, at the input
port 1 of this device is converted at an adjacent port 3 into a circularly polarized
signal with a hand of polarization whose direction of rotation is dependent upon
that of the direct magnetic field; any reflection of such an incident wave at this
port is converted to a horizontally polarized wave at the third port 3; any

(a) (c)

(b) (d)

S

S

NN

Figure 5.7 (a–d) Equivalent
circuits of nonreciprocal
quarter-wave plate (direct
magnetic field conditions
reversed).
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reflection of a horizontally polarized wave incident on this port is converted to a
circularly polarized wave at the fourth port 4 with the opposite hand of rotation
to that at port 2; the cycle is complete by noting that a signal with this polari-
zation at port 4 is coupled or reconverted to a vertically polarized wave at port 1.
Figure 5.6a depicts one possible equivalent circuit of this device.
Any of the four polarizations may of course be taken as an input port.

Figure 5.6b–d illustrates the nature of the polarizations at ports 2–4 with that
at port 1 circularly polarized in an anticlockwise direction, respectively.
Figure 5.7a–d depicts the appropriate terminal conditions for the direct mag-
netic field conditions reversed.
Scrutiny of these diagrams indicates that this circulator does not have the

fourfold symmetry associated with many conventional circulators. In obtaining
these diagrams, note is made of the fact that the direct magnetic field is reversed
with respect to the direction of the propagation after each transition through the
network. Since the device is a circulator, it may not be amiss to invoke the
notion of a gyrator impedance in its description.

5.5 Coupled and Normal Modes in Magnetized
Ferrite Medium

Propagation in infinite space or a circular waveguide may be described either in
terms of two degenerate orthogonal linearly polarized waves or in terms of two
degenerate counterrotating circularly polarized waves. If the degeneracy between
either descriptions is somehow removed, as in a ferritemedium, then the variables
whose degeneracy is removed are known as the normalmodes of the structure and
the others are known as the coupled ones. If the direct magnetic field in a ferrite
mediumcoincideswith the directionof propagation, then the degeneracy between
the circular polarized waves is removed and these are the normal modes; the
orthogonal waves are then the coupled modes. If the degeneracy is removed
between the orthogonal waves, as in the case of a ferrite medium with the direct
fieldnormal to thedirectionofpropagation, then theorthogonalwaves are thenor-
mal modes of the system and the circularly polarized ones are the coupledmodes.
The former situation leads to the phenomenaof Faraday rotation, applicable to the
description of nonreciprocal quarter-wave plates, as will now be demonstrated.
Decomposing the vertically and horizontally linearly polarized waves into

counterrotating circular ones, assuming that they are equal in amplitude, gives

hv =
1
2

1
j

exp − jβvz +
1
2

1
− j

exp − jβvz 5 14a

hh =
1
2

− j
1

exp − jβhz +
1
2

j
1

exp − jβhz 5 14b

Taking linear combinations of the clockwise and anticlockwise circularly
polarized waves yields
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h+ =
1
j

cos
βv−βh

2
ℓ exp − j

βv + βh
2

ℓ 5 15a

h− = j
1
− j

sin
βv−βh

2
ℓ exp − j

βv + βh
2

ℓ 5 15b

The circular variables are in this instance the periodic or coupled waves and
travel with similar propagation constants whereas the normal modes propagate
with equal amplitudes but different phase constants. This is the same dual sit-
uation as that encountered in the classic Faraday rotation case.
Adding the two circularly polarized waves gives

hv = exp − jβvℓ 5 16a

hh = exp − jβhℓ 5 16b

The wave is circularly polarized, provided

βv−βh ℓ

2
=
π
4

5 17

5.6 Variable Phase-shifters Employing Birefringent,
Faraday Rotation, and Dielectric Half-wave Plates

One classic type of reciprocal variable phase-shifter consists of a reciprocal
half-wave plate between reciprocal quarter-wave plates. The first quarter-
wave plate converts a linearly polarized wave into a circularly polarized
one, which is phase-shifted through an angle 2θ by the half-wave plate and
has its hand of polarization reversed by it; the second converts the latter wave
back to linear polarization. The half-wave plate resembles the quarter-wave
plate in construction but introduces a 180 instead of a 90 phase delay. This
arrangement will produce a continuous change in phase 2θ in a linearly polar-
ized wave if the half-wave plate is rotate about its axis θ, retarding or advan-
cing it depending on the orientation of the quarter-wave plate, with respect to
the polarization.
An electronic version of this mechanically controlled phase-shifter may be

constructed by replacing the dielectric half-wave plate by a birefringent one
employing a rotating magnetic field. It consists of a birefringent bit utilizing
a ferrite section magnetized by a rotating magnetic field similar to the classical
alternator. The magnetic field is established by quadrature currents in identical
quadrature coils. This provides a continuously increasing phase-shift, which is
linear in time to the same extent that the angular magnetic field is constant. The
ensuing structure, however, is now nonreciprocal. If nonreciprocal birefringent
quarter-wave plates are substituted for the reciprocal ones, then the overall net-
work is once more reciprocal. Another possibility, of course, is a reciprocal

Nonreciprocal Ferrite Quarter-wave Plates 73



section between nonreciprocal quarter-wave plates. A Faraday rotation
section between two reciprocal quarter-wave plates or between nonreciprocal
ones are two other possibilities. There are altogether three reciprocal and three
nonreciprocal configurations, which are summarized in Figures 5.8 and 5.9.
Figure 5.10 illustrates one possible equivalent circuit of the nonreciprocal fer-

rite phase-shifter.

Circular waveguide

Dielectric vane
Ferrite

Circular waveguide

Circular waveguide

Dielectric vane

Dielectric vane

Ferrite

Ferrite R

45°

45°

θ°

45°

135°

Figure 5.8 Nonreciprocal ferrite phase-shifter using reciprocal and nonreciprocal quarter-
wave plates and birefringent bits.
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Circular waveguide

Dielectric vane

Ferrite

Circular waveguide

Circular waveguide

Ferrite

R

45°

45°

θ°

Figure 5.9 Reciprocal ferrite phase-shifter using reciprocal and nonreciprocal birefringent
quarter-wave and half-wave birefringent bits.

μ ± κ

μ ± κ

Figure 5.10 Equivalent circuit of nonreciprocal ferrite phase-shifter.



5.7 Circulators and Switches Using Nonreciprocal
Quarter-wave Plates

The use of reciprocal and nonreciprocal quarter-wave plates in the construction
of ferrite phase-shifters is only one of a host of applications of these devices.
One simple application of the nonreciprocal quarter-wave plate is in the

construction of the switchable circulator polarized antenna, illustrated in
Figure 5.11. Figures 5.12 and 5.13 depict two other arrangements. The first is

Ferrite

Circular horn

Resistive vane

Figure 5.11 Schematic
diagram of a switchable
circular polarizer.

Two-mode transducer

Quarter-wave plate

Figure 5.12 Circulator network using 2 two-mode transducers, a ferrite quarter-wave plate
and a reciprocal quarter-wave plate.

76 Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches



a circulator type based on the use of 2 two-mode transducers, a ferrite and a
dielectric quarter-wave plate. The other is a 90 rotator switch using two non-
reciprocal quarter-wave plates and a two-mode transducer.

5.8 Nonreciprocal Circular Polarizer Using Elliptical
Gyromagnetic Waveguide

Still another quarter-wave plate may be constructed by recourse to the elliptical
gyromagnetic waveguide in Figure 5.14. Figure 5.15 shows the required
solution.

Two-mode transducer

Ferrite quarter-wave plates

Figure 5.13 Two-mode transducer
and 90 rotator.

hx (z)

hy(z)

Ferrite

Dielectric

Waveguide

C

H0

Z

Figure 5.14 Elliptical Faraday rotator.
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dE1
dz

= −Γ1E1 + k21E2 5 18

dE2
dz

= k12E1−Γ2E2 5 19

where E1 and E2 are the complex wave amplitudes in the primary and second-
ary waveguides. k21 and k12 represent the perturbed transfer effects of the cou-
pling mechanism. Γ1 and Γ2 are the perturbed propagation constants in the
primary and secondary waveguides, i.e.

Γ1 = α1 + jβ1 Γ2 = α2 + jβ2 5 20

For reciprocal coupling conservation of energy requires that the coupling
coefficient be imaginary:

k12 = k21 = jk 5 21

For nonreciprocal coupling it requires that the coupling coefficient be real:

k12 = −k21 =C 5 22

The solutions of Eqs. (5.18) and (5.19) for the reciprocal situation are of
the form:

E1 =A exp Γ0z +B exp Γez 5 23

E2 =C exp Γ0z +D exp Γez 5 24
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Figure 5.15 Wave amplitude in two
polarizations in elliptical Faraday
rotator for (βx − βy)/c = 2 and
(βx − βy)/c = 0.
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where

Γ0 = −
Γ1 +Γ2

2
− jk

Γ1−Γ2
2

−4k2
+ 1 5 25

Γe = −
Γ1 +Γ2

2
+ jk

Γ1−Γ2
2

−4k2
+ 1 5 26
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6

Ridge, Coaxial, and Stripline Phase-shifters1

Joseph Helszajn

Heriot Watt University, Edinburgh, UK

TEM transmission lines do not support natural planes of circular polarization
but may do so together with a suitable dielectric insert. Two typical structures
employing transverse direct fields which rely on the scalar permeabilities dis-
played by a magnetic insulator under the influence of counterrotating magnetic
fields are the coaxial-line and ridge waveguide ones. Since neither of these
exhibit natural regions where the alternating magnetic fields are circularly
polarized, some means of establishing such polarizations is necessary. In each
case this is done by loading the line by some suitable dielectric insert. The oper-
ation of the coaxial device may be understood by introducing an electric or mag-
netic wall at its symmetry plane and making a one-to-one equivalence between
it and a ferrite-loaded parallel plate waveguide with similar walls. The symmet-
ric E-plane ferrite-loaded ridge waveguide can also be reduced to an approxi-
mate parallel waveguide problem but the more general H-plane layout
requires more advanced analytical methods. The possibility of realizing ridge
or square coaxial lines is also noted. The stripline edge mode or field displace-
ment phase-shifter is separately considered in Chapter 8. The approach
employed in this chapter is practice orientated and is essentially descriptive
in nature.

1 Reprinted with amendments (Helszajn, J. (1982). 3.7–4.2 GHz 90 coaxial ferrite differential phase
shifter. IEE Proc. 129 (Part H): 199–202).
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6.1 Differential Phase-shift, Phase Deviation, and
Figure of Merit of Ferrite Phase-shifter

The practical specification of ferrite phase-shifters is dealt with here. Its descrip-
tion involves a compromise between conflicting parameters such as phase devi-
ation over some frequency interval, peak and average power rating, etc. Some
typical parameters that are of interest are summarized below as a preamble
to investigating some practical devices. Two quantities that are of obvious inter-
est are the phase deviation (Δθ) with respect to a 90 bit and the differential
phase-shift (Δϕ) per unit length defined, respectively, by

Δθ
π 2

6 1

and

Δϕ
L

radm−1 6 2

The figure of merit (F) of the device is separately defined in terms of the inser-
tion loss (a) per unit length and the differential phase-shift per unit length by

F =
Δϕ
α

raddB−1 6 3

For completeness, it is also necessary to spell out the normalized bandwidth
(BW) of the device, which is given in terms of the bandwidth (Δf) and midband
frequency (f0) by

Δf
f0

6 4

The insertion phase at midband ϕ0 may also be of some interest and is
defined below:

Δϕ
ϕ0

6 5

Hysteresis effects, temperature, switching speed, and voltage standing wave
ratio (VSWR) or return loss are often other parameters of concern.

6.2 Coaxial Differential Phase-shifter

The nonreciprocal coaxial phasor to be described now relies for its operation on
the two different scalar permeabilities associated with counterrotatingmagnetic
fields in a suitably magnetized ferrite-loaded coaxial transmission line. Whereas
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a homogenous coaxial line does not support planes of circular polarization, a
partially filled dielectric line does as is by now understood. This transmission
line is illustrated in Figure 6.1. The direct magnetic field in this device is per-
pendicular to the direction of the propagation.
One approximate solution to the problem of the coaxial ferrite phase-shifter is

obtained by forming a one-to-one correspondence between it and a parallel
plate waveguide with magnetic sidewalls. This equivalence is achieved by intro-
ducing a magnetic wall at the plane of symmetry of the coaxial network and
unwrapping it to form a parallel plate waveguide as indicated in Figure 6.2.

A= 2π
ra + rb
2

6 6

B= ra−rb 6 7

H0

H0

Ferrite

Ceramic
Inner conductor 

Outer conductor 

Figure 6.1 Schematic diagram
of nonreciprocal coaxial
transmission line.
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2
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ø øπ –
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Figure 6.2 Equivalent parallel plate waveguide of partially dielectric-filled coaxial
transmission line.
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The solution of this parallel plate waveguide problem with decaying fields
outside the dielectric region has been tackled in Chapter 3; the related fer-
rite-loaded arrangement has been dealt with in Chapter 12.
For completeness, it is observed that the introduction of ametal septum (elec-

tric wall) as indicated in Figure 6.3 makes the coaxial device in Figure 6.1 dual to
the much-used waveguide structure. The influence of such sidewalls, on the
split phase constants, is often minimal in practical devices.

The onset of the first higher-order mode in this class of waveguide has not
been investigated so far. It is obtained, in the absence of the ferrite section,
by evaluating the first root of the transverse resonance condition of the struc-
ture given below.

2π εr
λc

tan
2π εr
λc

ra + rb
4

π = −
2π
λc

tan
2π
λc

ra + rb
4

π 6 8

This equation applies to a half dielectric-filled coaxial line derived by placing a
magnetic wall at the symmetry plane of the circuit.
For εr = 15, the result is

2π
λc

εr
ra + rb
4

π ≈2 906rad 6 9

The matching problem for this class of transmission line may be attended to
by replacing the inhomogeneous line by the one completely filled by a material
with a relative dielectric constant εeff.
The impedance Zt and the wavelength λt of the inhomogeneous transformer

region may be defined in terms of the effective dielectric constant, provided the
propagation along the line is assumed quasi-TEM.

Zt =
Z0

εeff
6 10

H0

H0

Ferrite

Ceramic
Inner conductor 

Outer conductor 

Metal septum

Figure 6.3 Schematic diagram of nonreciprocal coaxial transmission line loaded with metal
septum.
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λt =
λ0
εeff

6 11

The effective dielectric constant of the inhomogeneous line is derived bymak-
ing use of either conformal transformation between the coaxial line and the
equivalent parallel plate waveguide indicated in Figure 6.4.
The derivation proceeds by calculating the capacitance of the partially dielec-

tric-filled coaxial line. This is readily given as

C =
ε0

ln rb ra c

2π−ϕ εr1 + εr2ϕ Fm−1 6 12

The capacitance of the original homogenous line is now formed by writing
ϕ = 0 in the preceding equation:

C =
2πεr1ε0
ln rb ra c

Fm−1 6 13

The required result is obtained by taking the ratio of the preceding two
capacitances.

εeff =
εr1 2π−ϕ + εr2ϕ

2πεr1
6 14

εr1 and εr2 are the relative dielectric constants of the two dielectric regions,
and ϕ is the angular angle defined in Figure 6.4.
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Figure 6.4 Equivalent parallel waveguides of partially filled coaxial line using conformal
mappings.

Ridge, Coaxial, and Stripline Phase-shifters 85



In order to overcome difficulties in machining, it is sometimes desirable to
have εr equal to π radians. This may be done by rearranging Eq. (6.9) as

εr2 =
εr1 + 2π εeff −1 +ϕ

ϕ
6 15

The conformal transformation employed here to describe the quasi-static
capacitance or characteristic impedance of the line cannot be used to construct
the transverse resonance condition in Eq. (6.3) because the corresponding width
of the equivalent waveguide is 2π, which is not related in any way to the actual
dimensions of the coaxial line. The capacitance or impedance of the line may,
however, be derived from either circuit. This will now be demonstrated.
The capacitance C of the equivalent waveguide in Figure 6.2 may be

written as

C =
ε0 1 + rb ra
2 rb ra −1 c

εr1 2π−ϕ + εr2ϕ Fm−1 6 16

For rb/ra small:

ln
rb
ra c

≈
2 rb ra −1
1 + rb ra

6 17

Making the use of this identity in Eq. (6.11) indicates that Eqs. (6.8) and (6.11)
are equivalent for rb/ra small. For a 50Ω line, rb/ra is 0.37 and the error is
about 5.4%.
Figure 6.5 depicts the split phase constants of one 3700–4200MHz device

based on the discussion outlined in this section.
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–90

–135
15 30 45 60
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Figure 6.5 Phase constants versus direct magnetic for 100mm× 2.99 mm× 2mm long
ferrite sheet (M0 0.0800 T) (Helszajn 1982).
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The experimental results are summarized below.

Δθ
π 2

≈ ±
2
90

Δϕ
L

=
π 2
0 100

radm−1

F =
π 2
0 150

raddB−1

Δf
f0

=
500
3950

Δϕ
ϕ0

=
900
ϕ0

Δθ is the phase deviation (rad), Δϕ is the differential phase-shift (rad), ϕ0 is
the midband insertion phase (rad), α is the insertion loss (dB), L is the overall
length (m), and f0 and f are the center frequency and bandwidth, respec-
tively (MHz).
Thematerial employed in obtaining this data had amagnetization of 0.0800 T,

a dielecric constant of 14.6, a spin-wave line-width of 23 kAm−1, and a dielectric
loss tangent of 0.0002. The dimensions of the ferrite sheets of the 90 section in
the final device were 1.20 mm by 3.40 mm by 100mm. The direct magnetic field
was about 65 kAm−1. The relative dielectric constant of the dielectric insert was
15.0. To reduce the reluctance of themagnetic circuit the inner conductor of the
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Figure 6.6 Ferrimagnetic resonance in a half dielectric-filled coaxial line loaded by garnet
sheets (70 mm long by 0.80 mm× 2.0 mm) (Helszajn 1982).
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coaxial line is made of magnetic steel and the conductor is silver plated to min-
imize the insertion of the device.
Higher-order modes occurred in the device at about 4.6 GHz in excellent

agreement with the calculation. The quality of the circular polarization was
investigated separately by biasing the phasor to ferrimagnetic resonance and
measuring the forward and backward transmission losses between 1.5 and
4.2 GHz. Figure 6.6 indicates that the polarization is indeed nearly circular in
the required 3.7–4.2 GHz band, and is nearly so over the full 2–4 GHz band.

6.3 Ridge Waveguide Differential Phase-shifter

A closely related geometry to that of the coaxial ferrite phase-shifter is that of
the ridge waveguide one. The operation of this device again rests on the two
different values of permeability exhibited by counterrotating magnetic fields
in a magnetized ferrite medium. The field pattern of ridge waveguide does
not, of course, have natural planes of circular polarization so that some means
of establishing them is necessary. This is achieved here, in keeping with com-
mon practice, by again recognizing that such fields are nearly always displayed
at the interface between two different dielectric regions and everywhere outside
it. The details employed in Chapter 3 in connection with this problem apply
here. It is furthermore assumed, for simplicity, that the introduction of thin
H or E plane ferrite or garnet substrates in the vicinity of the dielectric wall does
not in the first instance disturb the polarization in its neighborhood. Some pos-
sible topologies are illustrated in Figure 6.7.
Figure 6.8 depicts the experimental frequency response of a 90 bit over the

2–4 GHz band in WRD200 waveguide using the H-plane configuration. This
result is obtained by normalizing the phase for one orientation of the applied
field and recording the result for the reversed field.
The performance of the 90 bit may be summarized by

Δθ
π 2

≈ ±
3
90

Δϕ
L

=
π 2
0 120

radm−1

F =
π 2
0 50

raddB−1

Δf
f0

=
2000
3000

Δϕ
ϕ0

=
900
860
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The figure of merit F of this device reflects, in part, the use of a heavily doped
garnet material with a spin-wave line-width of ΔHk = 0.68 kAm−1 to suppress
spin-wave instability (or nonlinear loss), which can occur at high-peak power
levels in ferrite devices. The other material details are described by M0 =
0.0800 T, εr = 14.7, ΔH = 5.6 kAm−1, and tan δ ≈ 0.002. The direct magnetic
field employed at the 90 phase state is about 52 kAm−1.
Two features of note already remarked upon that may have some bearing on

this excellent result are that the phase constant of the unperturbed parallel-plate
waveguide is (for the parameters employed) quasi-TEM over the full 2–4 GHz
frequency interval and that the polarizations of the magnetic fields are nearly
circularly polarized over the same interval; another property of this geometry
is that its insertion phase (860 at midband) is quite large compared to the phase
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Figure 6.7 Schematic diagram of ridge waveguide phase-shifter.
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Figure 6.8 Differential phase-shift inWRD200 ridge waveguide (Hastings and Helszajn 1987).
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deviation of the magnetized bit (±45 ) so that perturbation conditions may be
assumed to prevail. Faraday rotation in free space or under perturbation con-
ditions in circular waveguides is another device that exhibits a similar frequency
characteristic. Figure 6.9 illustrates one practical differential phase-shift circu-
lator using ridges.

6.4 The Stripline Edge Mode Phase-shifter

Planar circuits are, of course, admirably suited for the design of field displace-
ment or edge mode phase-shifters. The parallel plane arrangement has already
been studied in some detail in Chapter 3. Figure 6.10 illustrates one stripline
configuration.
As is now well understood, operation rests on the fact that a suitably ferrite-

filled parallel plate waveguide magnetized perpendicular to the direction of
propagation exhibits a TE-type solution of the form:

Ey =Ae−αxe− jβx

Hx = ηEy

Hx = 0

Figure 6.9 Photograph of ridge waveguide differential phase-shift circulator. Source:
Courtesy Raytheon Co.
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This solution indicates that the fields decay exponentially across the waveguide
but exhibit no attenuation along the direction of propagation. Furthermore, the
two edges of this waveguide are decoupled, provided the waveguide is sufficiently
wide. In fact, the power is concentrated in the vicinity of one edge in the forward
direction of propagation and is displaced to the other one in the reverse direction
of propagation. Lining one of the two edges with some resistive material allows
edge mode isolators to be fabricated. Lining one of them with sane dielectric
material permits nonreciprocal phase-shifters to be constructed.

6.5 Latched Quasi-TEM Phase-shifters

The possibility of latching ferrite phase-shifters is, of course, always of some
interest. Suitable coaxial and ridge structures are illustrated in Figures 6.11
and 6.12.
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Figure 6.10 Schematic diagram of edge mode stripline phase-shifter.
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7

Finite Element Adjustment of the Rectangular
Waveguide-latched Differential Phase-shifter
Joseph Helszajn1 and Mark McKay2

1 Heriot Watt University, Edinburgh, UK
2 Honeywell, Edinburgh, UK

7.1 Introduction

The main topic of this chapter is the propagation in rectangular waveguides
containing one or two transversely magnetized ferrite slabs or sheets.
Figure 7.1a and b illustrate the two basic arrangements. The origin of the non-
reciprocal phase-shift in this type of waveguide may be readily understood by
recalling that the alternating magnetic fields on either side of the symmetry
plane of the waveguide are circularly polarized with opposite senses of rotation.
Furthermore, the senses of the polarization are interchanged if the direction of
propagation is reversed. A single thin ferrite slab will therefore exhibit a scalar
permeability with a positive value in one direction of propagation and a negative
value in the other.
Oppositely magnetized slabs on either side of the symmetry plane will behave

in a like manner. The operation of the arrangement in Figure 7.2 is identical to
that of Figure 7.1b, except that it relies on the existence of planes of circular
polarization produced at the interface between two different dielectric media.
A latching geometry is obtained here by adding horizontal ferrite members
to the geometry in Figure 7.1b in order to produce a closed magnetic circuit.
The problem has historically been addressed by satisfying Maxwell equations
in each region of the geometry and separately satisfying the boundaries between
each. The approach utilized here relies on a Finite Element (FE) formulation of
the problem.
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Figure 7.1 Rectangular waveguide phase-shifters: (a) loaded with a ferrite slab and (b)
symmetrically loaded with two oppositely magnetized ferrite slabs.
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Figure 7.2 Toroidal phase-shifter in rectangular waveguide.
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7.2 FE Discretization of Rectangular Waveguide
Phase-shifters

The cross-sections of some typical rectangular waveguide ferrite geometries
met in practice are illustrated in Figures 7.1 and 7.2. The problems under con-
sideration are inhomogenous ones consisting of isotopic and gyromagnetic
regions. A toroidal arrangement met in practice is illustrated in Figure 7.2.
The numerical method adopted here is the FE one. Each region is typically
divided into thousands of tetrahedral elements. A typical tetrahedral element
is depicted in Figure 7.3. A feature of the discretization is that the density of
the mesh will be larger in the regions of high field intensity, however, the num-
ber of elements on either side of a typical boundary have to be equal. Figure 7.4
illustrates a typical discretization of the geometry in Figure 7.1a by way of exam-
ple. The calculation of the cutoff numbers of this class of geometry do not
involve the introduction of ports, however, the calculation of the phase con-
stants do. The full development of this class of phase-shifter is a two-step pro-
cedure. The first involves a calculation of the cutoff number and propagation

Figure 7.3 Typical tetrahedral finite element.

Figure 7.4 Discretization of
waveguide loaded with a
ferrite slab.
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constant of the reciprocal waveguide. The second step involves the introduction
of the gyrotropy in the ferrite regions.

7.3 LS Modes Limit Waveguide Bandwidths

Practical latching ferrite phase-shifters rely on the existence of planes of circular
polarization at any plane between two different dielectric media. The modes
encountered with this geometry are the so-called LS ones. Figure 7.5 is a
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schematic diagram of the structure under consideration. The onset of higher-
order modes in this type of waveguide is of importance in the design of this class
of phase-shifter. Figure 7.6a and b depict some data.

7.4 Cutoff Numbers and Split Phase Constants of a
Twin Slab Ferrite Phase-shifter

Some typical calculations on the cutoff numbers and phase constants of the twin
slab phase-shifter depicted in Figure 7.1b are summarized in Figures 7.7 and 7.8.
This is done for a typical value of gyrotropy equal to ±0.50. The gyrotropy in a
saturated material is given in the usual way by the off-diagonal element of the
tensor permeability

κ =
γM0

μ0ω
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The diagonal element of the tensor permeability is

μ= 1

The tensor permeability is

μ =

μ − jκ 0

jκ μ 0

0 0 1

γ is the gyromagnetic ratio (2.21 × 105 rad s−1 per Am−1). M0 is the saturation
magnetization of the magnetic insulator (Am−1), ω is the radio frequency (rad
s−1), and μ0 is the free space permeability (4π × 10−7 Hm−1).
Figure 7.9 indicates the coordinates of the arrangement employed in

Figures 7.7 and 7.8. Figures 7.10 depicts the differential phase for two values
of dielectric constant. The calculations here and elsewhere in the chapter are
undertaken at a frequency of 3 GHz in WR187 waveguide.
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7.5 The Waveguide Toroidal Phase-shifter

The practical industrial twin slab waveguide phase-shifter is the toroidal one
illustrated in Figure 7.2. Figure 7.11 depicts the differential phase-shift obtained
by closing the magnetic path of the twin phase-shifter. A similar result with the
inner core filled with a dielectric material with a constant of 6.5 is also shown in
Figure 7.11.
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Figure 7.9 Coordinate system of rectangular
waveguide loaded with two ferrite slabs.
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7.6 Industrial Practice

In practice, the phase sections in Figures 7.1 and 7.2 have to be matched at both
the input and output ports to standard rectangular waveguide. Figure 7.12
shows a typical arrangement. Figure 7.13 illustrates onemeans of avoiding prop-
agation of higher-order modes in this type of phase-shifter. Figure 7.14 depicts a
4-bit structure housed in an undersized waveguide. Figure 7.15 shows a block
diagram of a typical electronic driver circuit for a multi-toroid latching wave-
guide phase-shifter.

7.7 Magnetic Circuits Using Major and Minor
Hysteresis Loops

Microwave ferrite phase-shifters rely for their operation on the relationship
between a direct magnetic field and the insertion phase of a suitably magne-
tized ferrite-loaded transmission line. The direct magnetic field can be
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Figure 7.11 Differential phase in toroidal phase-shifter versus gyrotropy.
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Figure 7.13 A practical approach for avoidance of the propagation of higher-order modes in
a ferrite phase-shifter.

Figure 7.14 Plan view of a 4-bit
toroidal phase-shifter in
undersized waveguide.
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Figure 7.12 Matching between
dielectric loaded and regular
waveguides.
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established using either an external electromagnet or it can be switched by
current pulses through a magnetizing wire between two remanent states of
the major or indeed of a minor hysteresis loop of a closed magnetic circuit.
The former arrangement requires a holding current to hold the device in a
given state. In the latter one, however, no holding current is necessary; the
device remains latched in a given state until another switching operation is
required. The advantages and disadvantages of each type of circuit are
understood.
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Fixed
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180°
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Command inputs

Figure 7.15 Block diagram of a typical electronic driver circuit for a multi-toroid latching
waveguide phase-shifter.
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Operation on the major hysteresis loop may be understood by scrutinizing
the hysteresis loop in Figure 7.16, provided it is recognized that the size and
shape of this loop may vary with the speed of the switching process. In this
situation, the magnetization of the toroid is driven between two remanent
states (±4πM0) equidistant from the origin by the application of a current
pulse sufficiently large to produce a field perhaps three or five times that of
the coercive force. After this point is reached, the current pulse is removed
and the magnetization will move to the remanent value (±4πM0) and remain
there until another switching operation is desired. In this example, two phase-
shift states are available, corresponding to the two possible values of remanent
magnetization.

7.8 Construction of Latching Circuits

A large number of phase states can be achieved by connecting a number of bits
in cascade, each of which has a different physical length (and consequently
phase-shift). This is illustrated in Figure 7.15 in connection with a nonreciprocal
4-bit waveguide phase-shifter. Each electronic driver circuit is relatively simple
since it is only required that the toroids be driven back and forth between their
major loop remanent states, but the total number of electronic parts may be

M

4πMr

+4πMmax

–4πMr
–4πMmax

H

Figure 7.16 Typical hysteresis loop of a latching phase-shifter operating with a major loop
switching.
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quite high, especially in units having five or more bits. Furthermore, a large
number of latching wires must enter and leave the waveguide and several
changes in cross-section may occur through the length of the ferrite/dielectric
section. The complexity of the microwave circuit makes it difficult to achieve
very low values of insertion loss and restricts the bandwidth of the device; it also
leads to manufacturing difficulties. This technique, however, possesses one very
significant advantage in some system applications; it can be switched very rap-
idly (typically less than ½ μs). Operation on aminor hysteresis loop only requires
one toroid; intermediate values of phase-shift may be obtained by latching it to
an intermediate or minor loop value of remanent magnetization.

7.9 Temperature Compensation Using Composite
Circuits

The magnetization of ferrite materials, as already noted, depends on tempera-
ture and, indeed, vanishes at the so-called Curie temperature. Figure 7.17 illus-
trates the B–H loop characteristics of a YIG material at several temperatures.
The use of this material in a microwave latching circuit is obviously incompat-
ible with the realization of temperature-insensitive ferrite devices such as phase-
shifters and circulators.

1040 G

120 °C

206 °C

25 °C

0.530 in.

0.250 in.

0.8 Oe H

B

Figure 7.17 Major B–H loop characteristics of YIG at several temperatures. Source: Stern and
Ince (1967).
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One way to overcome this drawback is to utilize a composite magnetic circuit
comprising a temperature-sensitive material within the microwave housing and a
temperature-stable non-microwave material with a square hysteresis loop in the
external circuit; themicrowavematerial is operated in aminor hysteresis loop and
the non-microwave one on its major loop (Figure 7.18). The operating point of
the composite magnetic circuit is governed by the magnetic circuit relationships:

NI =H1l1 +H2l2

which describes the magnetomotive force (mmf ) around the circuit and by

ϕ=B1A1 =B2A2

so that the total number of lines of magnetic induction (ϕ) through a given area
(A) is a constant in each region of a closed magnetic circuit.
The mmf (NI) and load conditions of the composite circuit are initially set so

that when the mmf is removed the microwave and non-microwave parts of the
circuit are operated on their minor and major loops, respectively. As the tem-
perature is raised above room temperature the hysteresis loop of the microwave
material shrinks but the flux through the composite circuit remains unchanged
until it coincides with the major hysteresis loop of the temperature-sensitive
part of the circuit. Above that temperature value, the microwave material
can no longer support the flux through the circuit and the stabilizing action
of the composite circuit breaks down. The operation of the composite circuit
is illustrated in Figure 7.19.
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Figure 7.18 Major and minor B–H loops of nickel–cobalt ferrite at 25 C. Source: Stern and
Ince (1967).
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Edge Mode Phase-shifter
Joseph Helszajn1 and Henry Downs2
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A classic feature of many magnetized ferrite transmission lines or waveguides is
that of a nonreciprocal field or edge mode effect. One simple transmission line
that readily exhibits this property is the ferrite-loaded parallel plate waveguide,
illustrated in Figure 8.1a, with the direct magnetic field perpendicular to the
direction of propagation. The power distribution in this waveguide is displaced
towards one edge of the ferrite region in one direction of propagation and
towards the other in the opposite direction. An edge mode phase-shifter is read-
ily constructed by loading one or the other of the walls by some dielectric mate-
rial; a nonreciprocal attenuator or isolator is likewise realized by lining one of
the edges by a resistive wall. This class of structure also displays magnetic fields,
which are nearly circularly polarized with opposite hands at each edge of the
ferrite region. This property, however, is not essential for the description of
the phase-shifter and isolator illustrated in Figure 8.1b. Such geometries there-
fore display both edge mode effects and planes of counterrotating circular
polarization.
The simple model of the edge mode device described in this chapter indicates

that the attenuation coefficient in the transverse plane is proportional to the
product of the width of the ferrite region and the off-diagonal element of the
tensor permeability. This suggests that the width of the parallel plate waveguide
is fixed by the required decoupling between the two edges (say 10 or 15 dB) and
that wide strips are required for design unless ferrite materials with large values
of magnetization are employed.
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8.1 Edge Mode Effect

The principle of the edge mode phase-shifter, first described by Hines, is well
rehearsed and will only be reviewed here for tutorial purposes. The basic phe-
nomena of this device may be demonstrated without difficulty by assuming a
quasi-TE solution in the magnetized ferrite region:

Ey 0, Hx 0, Hz 0 8 1a

Ex = Ez =Hy = 0 8 1b

and by assuming that the spatial variations of the field patterns are

∂

∂x
= αx 8 2a

∂

∂y
= 0 8 2b

c a

c ca b

B

B

c

A

A

Free space Free spaceFerrite

Ferrite

Ferrite or
dielectric

Dielectric
or free space

(a)

(b)

Free space

Electric wall Magnetic wall

Figure 8.1 Schematic diagram of (a) an air–ferrite–air parallel edge mode prototype with
magnetic sidewalls and (b) a four-region edge mode parallel plate waveguide with magnetic
sidewalls.
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∂

∂z
= − jβz 8 2c

Taking the direct magnetic field perpendicular to the direction of propagation
also gives the tensor permeability as suppressor:

μ =

μ 0 − jκ

0 1 0

jκ 0 μ

8 3

Maxwell’s first curl equation then gives

ax ay az

−αx 0 − jβz

0 Ey 0

= − jωμ0

μ 0 − jκ

0 1 0

jκ 0 μ

Hx

0

Hz

8 4

Solving this equation for Hz and Hx, in terms of E, gives

Hx

Hz
=

1
jωμ0

Hx − jκ

jκ μ

− jβz Ey

αx Ey
8 5

and

Hx =
Ey

ωμ0μeff
−βz + αx

κ

μ
8 6a

Hz =
jEy

ωμ0μeff
βz

κ

μ
−αx 8 6b

where

μeff =
μ2−κ2

μ

The relationship between the separation constants is given with the aid of the
wave equation by

α2x−β
2
z +ω

2μ0μeffεf = 0 8 7

The required result may now be demonstrated by placing a magnetic wall
boundary condition at the plane x = 0 and assuming a unidirectional wave con-
fined to this edge, i.e.

Ey =Ae
−αxx e − jβzz 8 8

Hx = 0 at x= 0 8 9

Introducing the latter relationship in Eq. (8.6b) gives
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αx =
κ

μ
βz 8 10

The dispersion equation is satisfied with μeff either positive or negative with

βz =ω μ0ε0εfμ 8 11

αx =ω
κ

μ
μ0ε0εfμ 8 12

The field components in the transverse plane therefore decay exponentially
with a coefficient αx proportional to κ/μ and Hz is zero everywhere:

Ey =Ae −αxx e − jβzz 8 13

Hx = ζEy 8 14

Hz = 0 8 15

where ζ is the wave admittance.

ζ =
ε0εf
μ0μ

8 16

The above model supports a TEM solution and displays a low-frequency cut-
off number. Furthermore, since μeff does not enter directly into the description
of this solution it may smoothly straddle the two regions where μeff is either pos-
itive or negative.
If the material is just saturated so thatH0 −NzM0/μ0≈ 0 (as it must be if μeff is

negative), then

κ≈
ωm

ω
8 17

then

μ= 1 8 18

Equations (8.11) and (8.12) may also be written as

βz =ω μ0ε0εf 8 19

αx =ωm μ0ε0εr 8 20

The edge mode effect is therefore completely frequency independent and the
decoupling between the two edges is merely dependent upon the relationship
between ωm and the width (a) of the ferrite section; the only frequency limita-
tion in this class of device is thus the onset of higher-order modes.
A complete solution of the edge mode device also requires, of course, a def-

inition of characteristic impedance. Impedances based on power–voltage and
power–current relations are given by Hines.
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8.2 Edge Mode Characteristic Equation

The principle of the edge mode effect in a simple ferrite region with magnetic
sidewalls has been derived in closed form in Section 8.4. The model adopted in
the discussion here is due to Bolle and Talisa (1979) and consists of imposing
magnetic wall boundary conditions at two terminal planes sufficiently far
removed from the main ferrite region to ensure convergence of the phase con-
stants of the device. Its characteristic equation may be derived by forming the
overall transmission matrix of the waveguide in the transverse plane. This
method is somewhat more straightforward than that used historically, which
relies on matching the fields at each boundary. For the four-region geometry
illustrated in Figure 8.1b, the result is

A B

C D
=

A1 B1

C1 D1

A2 B2

C2 D2

A3 B3

C3 D3

A4 B4

C4 D4
8 21

The two outside free-space regions support decaying waves and the ABCD
parameters of these regions are described by hyperbolic functions. The inner
ferrite and dielectric regions support unattenuated waves and the correspond-
ing parameters involve trigonometric variables. The required characteristic
equation of the phase-shifter is then formed by imposing magnetic wall bound-
ary conditions at the sidewalls of the waveguide. The result is

C = 0 8 22

The split roots of this equation correspond to the phase constants of the
device.
The field patterns and the power densities in the two directions of propaga-

tion are then calculated in the usual way from a knowledge of the corresponding
phase constants.

8.3 Fields and Power in Edge Mode Devices

The absolute power down any waveguide is given by forming the Poynting vec-
tor in terms of the transverse components of the fields and the cross-section of
the structure defined by its overall width (A) and ground plane spacing (B) by

Pt =
1
2
Re

A

0

B

0
Et ×H∗

t dxdy 8 23

Both the fields and the power flow down the waveguide are evaluated in
reduced units in order not to restrict the results to any particular frequency;
the onset of spinwave instability in the ferrite region, which may occur at large
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power levels, may therefore be estimated from these data. Pt is evaluated numer-
ically here by subdividing the overall cross-section into 500 subregions.
The power, Pt, in reduced units is formed from a knowledge of Pt by substi-

tuting k0A and k0B for A and B in the preceding integral:

Pt = k20Pt 8 24

where

k0 =
2π
λ0

8 25

Pt is now evaluated numerically in terms of Ey in arbitrary units (say 1) at one of
the magnetic sidewalls and its absolute value is subsequently set by equating Pt
to unity, i.e.

Pt
1
=

1
E2
y

8 26

In forming the power flow in reduced units it is also assumed that k0B = 1, so
that the results are readily scaled to any situation for which k0B has some dif-
ferent value.
Figure 8.2 depicts the field and power distributions in the forward and

backward directions of propagation for an air–ferrite–air configuration with
magnetic sidewalls. It clearly illustrates both an edge mode effect and the
quasi-circularly polarized nature of the alternating magnetic field at the planes
of the ferrite and/or dielectric regions as well as outside them.
Some perspective of the scales used to display the power and field plots in

these illustrations may be formed by noting that k0A for ordinary rectangular
waveguides lies between 3.8 and 5.7. The wide dimensions (A) of the edge mode
waveguides studied here (in reduced units) have therefore been sized somewhat
below the recommended frequency interval of standard waveguide, in order to
cater for the ferrite loading:

k0A= k0 a+ b+ c+ = 2 50rad 8 27a

where a, b, c, etc., are the linear dimensions of the different sections of the edge
mode waveguide.
The narrow dimension of the waveguide (B) is fixed throughout this work, as

already noted, as

k0B= 1 8 27b

The aspect ratio of the waveguide

A
B
= 2 50 8 27c

is therefore of the order of standard waveguides.
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Figure 8.2 Field and power distribution in an air–ferrite–air edge mode prototype with
magnetic sidewalls for propagation in (a) the forward direction and (b) the reverse direction
with k0a = 0.50, c/a = 2, εf = 15, and κ = − 0.40. Source: Helszajn and Downs (1987).

Edge Mode Phase-shifter 117



8.4 Circular Polarization and the Edge Mode Effect

Scrutiny of the magnetic fields of the geometry in Figure 8.2 indicates that it is
nearly circularly polarized at the two planes between the ferrite–air regions.
Inspection of the nature of the other solutions indicates similar features. Inter-
estingly enough, the power flow is in each instance displaced towards the edge
that exhibits the scalar permeability (μ + κ) and away from the edge that displays
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Figure 8.2 (Continued)
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the scalar permeability (μ − κ); (μ ± κ) are the eigenvalues of the tensor perme-
ability exhibited by counterrotating eigenvectors. The connection between the
quality of the circular polarization and the edge mode effect is qualitatively
understood. The polarization at the edges of the ferrite region and everywhere
outside it in a demagnetized air–ferrite–air structure is a standard problem,
provided the fields are assumed to decay outside the ferrite region and that
the sidewalls are at plus and minus infinity. The result is described by

Hx

Hz
= j

βz
αxa

8 28

where βz is the propagation coefficient along the z direction in both the ferrite
and free-space regions and αxa is the x-directed attenuation constant in the
outer air regions. Thus,

β2z = α
2
xa−k

2
0 , βxa = 0 8 29

β2z = k
2
0μeεf −β

2
xf , αxf = 0 8 30

Figure 8.3 indicates the polarization at the ferrite–air edge and everywhere
outside it for a typical situation.
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Figure 8.3 Quality of circular polarization versus frequency and k0 for an air–ferrite–air edge
mode prototype with c/a = 2.
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8.5 Edge Mode Phase-shifter

The edge mode phase-shifter is constructed by loading one of the edges by a
slow wave structure, usually a dielectric lamination with some different relative
dielectric constant from that of the ferrite material. The simple theory of the
edge mode device indicates that the ferrite region should be relatively wide
and that its bandwidth can be very large. Figure 8.4 depicts a typical result
for one value of εd, but it is not suggested that this solution is best in any sense
of the word. Also superimposed on this illustration is the onset of the first
higher-order quasi-TE mode in this type of waveguide. The maximum bound
on the linear dimensions of this device is of course determined by the onset
of the higher-order mode; the minimum bound by the realizable microwave
specification. Octave band frequency intervals may, for instance, be specified
from illustrations such as that in Figure 8.4 with κ between 0.10 and 0.20
(say), 0.20 and 0.40, 0.40 and 0.80, 0.30 and 0.60, and so forth, and with k0a
between similar intervals for each choice of a/b, εf, εd. The optimum solution
is of course not clear-cut and is outside the remit of this work. Figure 8.5 indi-
cates one result which straddles the two regions where μe is positive or negative
(2.70 ≥ κ ≥ 0.30) but with a saturated material. This illustration suggests that
there is a range of structures with εd between 5 and 15 that is suitable for
the design of a 90 ± 4.5 phase bit over one octave band. It is noted, in passing,
that well-formed planes of circular polarization exist on this geometry at both
band edges of its frequency response. Figure 8.6 gives the field and power
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Figure 8.4 Normalized differential phase-shift for an air–ferrite–dielectric–air parallel plate
edgemode waveguide withmagnetic sidewalls with εf = 15, εd = 25, a/b = 4, c/(a + b) = 2, and
parametric values of κ.
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Figure 8.5 Frequency response of air–ferrite–dielectric–air edge mode differential phase-
shifter with magnetic sidewalls with εf = 15, εd = 25, a/b = 4, c/(a + b) = 2, and parametric
values of εd.
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Figure 8.6 Field and power distributions in an air–ferrite–dielectric–air parallel plate edge
mode waveguide withmagnetic sidewalls for propagation in (a) the forward direction and (b)
the reverse direction with k0a = 0.40, k0b = 0.10, c/(a + b) = 2, εf = 15, εd = 25, and κ = − 0.40.
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distributions for the two directions of propagation and Figure 8.7 the differential
phase shift in this type of waveguide.
The ABCD description of the problem treated here does not cater for higher-

order modes; the data in this and the other illustrations therefore do not apply
under that situation unless some suitable mode suppressor is utilized.

8.6 Edge Mode Isolators, Phase-shifters,
and Circulators

The edge feature in a wide stripline or microstrip line has, in practice, been used
in the construction of wideband isolators, phase-shifters, and three- and four-
port junction circulators. The problem, in each case, is the transition between a
standard stripline or microstrip circuit with a narrow strip width and that of the
edge circuit with a large strip width. Figure 8.8 illustrates some typical micro-
strip configurations.
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Figure 8.7 Differential phase-shift for an air–ferrite–dielectric–air parallel plate edge mode
waveguide with magnetic sidewalls with ε = 15, εd = 15, k0a = 2.5, a/b = 4, and c/(a + b) = 2.
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The Two-port On/Off H-plane Waveguide Turnstile
Gyromagnetic Switch
Joseph Helszajn1, Mark McKay2, Alicia Casanueva3, and Angel Mediavilla
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Santander, Spain

9.1 Introduction

The two-port on/off switch described in this chapter is a tee junction consisting
of an E-plane Faraday rotation section at the junction of two H-plane rectangu-
lar waveguides. The junction is often referred to as an H-plane geometry in the
literature, but the convention adopted here is that introduced by Dicke.
The arrangement under consideration is illustrated in Figure 9.1. The struc-

ture has a passband when the side port is 90 long. It has a stopband when it is
180 long. The former is here obtained, provided the demagnetized Faraday
rotator is 90 long. The latter is achieved by rotating the polarization on the
rotator by 90 in the positive direction of propagation and a further 90 rotation
in the reverse direction for a total of 180
The two-port switch supports, in keeping with all microwave circuits, a mul-

tiplicity of higher-order solutions. The chapter includes one example which
displays a passband in the demagnetized state and a stopband in the magnetized
state.

9.2 Two-port H-plane Turnstile On/Off Switch

The H-plane tee junction is also known as a series tee junction. A subset of the
Dicke junction is the two-port geometry obtained by closing the side port. Its
schematic diagram is depicted in Figure 9.2.
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The operation of the on or demagnetized and off ormagnetized switch is shown
in Figure 9.3a and b. The first topology produces a series lumped element reso-
nator between the ports of the main waveguide. The second produces a shunt
circuit there. The effect of rotating the polarization of the rotator by 90 in the
forward direction of propagation and a further 90 in the reverse one for a total
of 180 by magnetizing the junction is to add a 90 unit element (UE) in cascade
with that of the demagnetized rotator. The even mode of the circuits, not shown,
does not propagate along the gyromagnetic waveguide. As the oddmode coupling
is between the transverse magnetic fields in the main waveguide and rotator sec-
tion it is necessary to introduce an additional 90 UE at the secondary terminals of
the transformer to account for these being in quadrature with the longitudinal
magnetic field for the even mode.

Piston

(a) (b)

Gyromagnetic
resonator

Piston

Gyromagnetic
resonator

H0
H0

Figure 9.1 Two-port H-plane waveguide reflection switches using reentrant (a) and inverted
reentrant (b) single quarter-wave-long gyromagnetic resonators.

Figure 9.2 H-plane series tee junction.
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9.3 Even and Odd Eigenvectors of E-plane Waveguide
Tee Junction

The adjustment of the switch is facilitated by decomposing a single generator
setting at one port into in-phase and out-of-phase (even and odd) eigenvectors
settings at both ports. The even or in-phase eigenvector establishes a finite elec-
tric field across the symmetry plane of the rectangular waveguides and a null in
the alternating magnetic field across the open flat face of the circular waveguide;
it does not produce any propagation along the side waveguide. Its geometry is a
two-layer planar circular resonator consisting of a dielectric region with a

s/c

s/c

90°

90° 90°

90°

90°

(a)

(b)

Figure 9.3 Lumped element models of H-plane switches: (a) demagnetized and (b)
magnetized resonators.
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dielectric constant εf and a gap region with a dielectric constant εd. The odd or
out-of-phase eigenvector, on the other hand, produces a null in the electric field
at the symmetry plane of the rectangular waveguides and a finite alternating
magnetic field across the circular one, which may be decomposed into counter-
rotating fields along the side waveguide. The two situations are depicted in
Figure 9.4.

9.4 Eigenvalue Adjustment of Turnstile Plane Switch

The scattering parameters of the two-port arrangement are specified in terms of
the even and odd reflections eigenvalues of the geometry:

S11 =
ρeven + ρodd

2
9 1a

S21 =
ρeven−ρodd

2
9 1b

where

ρeven = 1 exp− j2 θeven 9 2a

(a)

(b)

Figure 9.4 E-plane waveguide tee junction: (a)
odd eigenvector and (b) even eigenvector.

130 Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches



ρodd = 1 exp− j2 θodd +
π
2

9 2b

θeven and θodd are the electrical lengths of the UEs. θeven or θodd are zero on
the axis of the junction and 90 at the edge of the resonator. On the axis
ρeven or ρodd is −1 for a s/c UE and ρeven or ρodd is +1 for an o/c UE.
The reflection eigenvalues coincide with even and odd voltage settings at the

ports of the network. The eigen-networks at the input terminals obtained in this
way are indicated in Figure 9.5.
The odd mode propagates along the Faraday rotation section whereas the

even one does not. The former has an additional angle θ in the positive direc-
tion of propagation, a similar angle in the reverse direction, and a 180 phase
reversal at the short-circuit plate. The even mode does not propagate along
the Faraday rotation section.
The passband condition coincides with

ρeven = −1, θeven =
π
2

9 3a

ρodd = + 1, θodd =
π
2

9 3b

This gives

S11 = 0 9 4a

S21 = −1 9 4b

The stopband condition is obtained for this network, provided

ρeven = −1, θeven =
π
2

9 5a

ρodd = −1, θodd =
π
2

9 5b

a a

Resonator Resonator

o/c s/c

ρeven = exp–j 2(θeven) ρodd = exp–j 2(θodd+π/2)

Figure 9.5 Plan view of even and odd eigen-networks of an H-plane two-port reflection
switch.
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This gives

S11 = −1 9 6a

S21 = 0 9 6b

The eigenvalues under considerations are illustrated in Chapter 11.

9.5 Eigen-networks

The nature of the even and odd reflection coefficients of the demagnetized and
magnetized H-plane switch may be deduced by bisecting its equivalent circuit
by electric and magnetic walls. The eigen-networks obtained thus are indicated
in Figures 9.6 and 9.7. The reflection coefficients are in the first instance are −1
and +1 at the edge of the resonator. The latter conditions are compatible with a
passband frequency response. The reflection coefficients of the magnetized
switch are both −1. The latter quantities are compatible with a stopband fre-
quency response.

o/c

θevenρeven

(a)

L/2

2C

θoddρodd

(b)

Figure 9.6 (a) Even mode demagnetized eigen-network. (b) Odd mode demagnetized
eigen-network.

o/c

θevenρeven

(a)

2C L/2

θoddρodd

(b)

Figure 9.7 (a) Even mode magnetized eigen-network. (b) Odd mode magnetized eigen-
network.
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9.6 Numerical Adjustments of Passbands

The eigenvalue adjustment of the switch starts by making use of the connection
between the reflection eigenvalues and the scattering parameters of the junction
at the reference plane of the junction:

ρeven = S11 + S21 9 7a

ρodd = S11−S21 9 7b

The relationship between k0R and qeff is not unique. It continues by construct-
ing polynomial solution P(k0R) and Q(k0R) connecting qeven and qodd to k0R at
which ρeven = − 1 and ρodd = + 1.

qeven = P k0R , ρeven = −1,
R
L
= constant, k0 = constant 9 8a

qodd =Q k0R , ρodd = + 1,
R
L
= constant, k0 = constant 9 8b

The required characteristic equation at the reference plane of the resonator for
the unknown product k0R is

P k0R −Q k0R = 0 9 9

This condition is satisfied, provided

qeff = qeven = qodd 9 10

where

qeven =
L

L+ Seven
9 11a

qodd =
L

L+ Sodd
9 11b

qeff =
L

L+ S
9 11c

k0R is obtained by solving the characteristic equation in Eq. (9.9) and qeff is
obtained thereafter by having recourse to Eq. (9.10). The reference plane is
in the process restricted to the terminals of the resonator. Repetitive calibrations
of the reference plane of the junction are minimized by varying qeff for paramet-
ric values of k0R rather than the converse choice. A typical calculation involves
partitioning the k0R interval into m segments and the qeff one into n segments.
A typical solution is obtained with m = 6 and n = 4 implying 24 problem draw-
ings and six calibration steps.
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The adjustment procedure for either process starts by fixing the rectangular
waveguide, the frequency of the switch under consideration, and the dielectric
constant of the resonator:

WR75, a= 2b

f0 = 13 25GHz

f0
fc
= 1 68

εf = 15 0

A passband is here taken by way of an example. A stopband is obtained by rever-
sing the sign of ρodd.

ρeven = −1

ρodd = + 1

k0 and R/L are here the independent variables and k0R and the gap factor qeff as
the dependent ones.

k0 = 0 277radmm−1,

R
L
= 2 0

The solution here is qeff= 0.5364, k0R= 0.807
Figure 9.8a shows the comparison between calculated and experimental

return and insertion loss (Helszajn et al. 2010). Figure 9.8b depicts the stopband
frequency response of the two-port on–off gyromagnetic switch (Helszajn
et al. 2010).

9.7 An Off/On H-plane Switch

An off/on H-plane switch is also readily realized. The off state is here obtained
by replacing the 90 demagnetized rotator section by a 180 one. The on state is
achieved by rotating the polarization by 90 by magnetizing the junction. The
latter operation adds an additional 90 section to the arrangement thereby pro-
ducing a passband between the ports. Figure 9.9 illustrates the developments of
both the stop and passband obtained in this way.
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Figure 9.8 (a) Comparison between calculated and experimental passband return loss and
insertion loss (R/L = 2.0, k0R = 0.807, qeff = 0.5364) (Helszajn et al. 2010). (b) Experimental
stopband frequency response of two-port on–off gyromagnetic switch (B0/μ0M0 = 0.34)
(Helszajn et al. 2010).
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Off/On and On/Off Two-port E-plane Waveguide Switches
Using Turnstile Resonators
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10.1 Introduction

The operation of the E-plane waveguide tee junction is the topic of this chapter. It
consists of a quarter-wave long 90 Faraday rotator section on one narrow wave-
guidewall separated from the other by a gap. Its schematic diagram is illustrated in
Figure 10.1a. The junction is often referred to as an E-plane geometry in the liter-
ature, but the convention adopted here is that introduced by Dicke. The dual E-
planegeometryobtainedbyplacingtheresonatoronthewidewallof thewaveguide
is also shown for completeness sake in Figure 10.1b (Yoshida 1959). The demag-
netized tee junction under consideration experimentally supports stop and pass
bandfiltercharacteristicswhendemagnetizedandeitheroff/onoron/off switching
characteristics when magnetized. The large-gap demagnetized geometry is a stop
band filter, the small one is a passband.The frequency transformationbetween the
two has been demonstrated byOmori (1968). The filters are converted into off/on
and on/off switches by replacing the dielectric resonators by 90 Faraday rotators.
The stop band filter is heremapped into an off/on switch, the pass band filter into
anon/off one. Anunderstanding of the operation of this class of circuit requires an
appreciation of the eigenvalue problem. It supports one-port even and odd eigen-
networks and reflection coefficients obtained by bisecting the network by electric
and magnetic walls. Stop bands are obtained between the rectangular waveguide
ports whenever the even and odd reflection coefficients are in phase. Pass bands
exist whenever the reflection coefficients are out of phase. The even eigen network
is a two-layer quasi-planar resonator characterized by a gap-dependent dielectric
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constant and it supports propagation along the dielectric or gyromagnetic
resonator. The odd eigen-network does not propagate along the Faraday rotator
section and is unaffected by the gap. The dynamic range of the gap-dependent die-
lectric constant is bracketed between that of free space and that of the ferrite insu-
lator. The off/on and on/off statesmay be exchanged by shifting either the even or
odd reflection coefficients by 180 . The gap of the junction provides a means of
reversing the even one; replacing the 90 rotator by a 180 section steps the even
reflection coefficient by a similar amount. The chapter includes onenumerical cal-
culation on the frequency responses of an off/on switch.

10.2 The Shunt E-plane Tee Junction

The E-plane tee junction dealt with here is also known as a shunt circuit. Its
equivalent circuit is shown in Figure 10.2. A short-circuit 90 unit element
(UE) will produce an o/c at the secondary and primary terminals of the ideal
transformer. However, the even mode coupling is from the longitudinal mag-
netic field in the main waveguide to the transverse magnetic field in the rotator
section and it is necessary to introduce an additional 90 UE at the secondary

Gyromagnetic resonator Gyromagnetic resonator

Gyromagnetic
resonator

Gyromagnetic
resonator

Piston

Piston

Piston

Piston

H0 H0

H0
H0

(a)

(b)

Figure 10.1 Schematic diagrams of reentrant and inverted reentrant ferrite switches using
(a) E-plane tee junctions and (b) H-plane tee junctions.
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terminals to account for the fields being in quadrature. The net effect is to pro-
duce a s/c at the secondary and primary terminals of the transformer and a stop
band between the ports of the demagnetized junction.
The effect of rotating the polarization of the Faraday rotator by 90 by mag-

netizing the junction is to introduce an additional 90 UE in cascade with that of
the rotator. The load at the secondary and primary terminals of the transformer

is now an open-circuit. The net result is a pass band between the input and out-
put terminals of the waveguide. The two steps are shown in Figure 10.3a and b.
The demagnetized stop band may be converted to a pass band by replacing

the 90 Faraday rotation section in the side waveguide by a 180 one. The stop
band thereafter is obtained by rotating the polarization of the Faraday rotation

Figure 10.2 Shunt E-plane tee junction.

90°

90°

S/C

90°

90°

90°

S/C

(a)

(b)

Figure 10.3 (a) E-plane stop band (demagnetized). (b) E-plane pass band (magnetized).

Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators 139



section by 90 . This establishes an additional 90 section in cascade with that of
the demagnetized one for a total of 360 resulting in a stop band between the
ports. The two steps are indicated in Figure 10.4a and b.

10.3 Operation of Off/On and On/Off E-plane Switches

The off/on switch is a large gap or non-evanescent geometry. Its off state is
obtained by optimizing the details of a quarter-wave long demagnetized Faraday
section on one narrow wall of the waveguide together with the details of a two-
layer quasi-planar resonator. The latter fixes the size of the gap between the
open face of the resonator and the opposite narrow waveguide wall or piston.
The reflection coefficient of the rotator section at its input plane is 180 . This
angle is made up of a 180 angle in the forward direction of propagation, a fur-
ther 180 angle in the reverse direction, and a 180 angle at the short-circuit
plate. The demagnetized Faraday rotation section has, therefore, no essential
effect on the odd reflection coefficient at the symmetry plane of the junction.
The odd reflection coefficient is here +1 at the terminals of the resonator. It
is +1 in the case of the even reflection coefficient. The on state is separately rea-
lized by inverting the polarization of the even eigenvector by magnetizing the
90 rotator. This effect may be understood by noting that the rotator produces
a 90 rotation of the polarization in the forward direction of propagation and a

S/C

S/C

180°
180°

90°

90°

90°

(a)

(b)

Figure 10.4 (a) E-plane pass band (demagnetized). (b) E-plane stop band (magnetized).
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further 90 in the reverse direction for a total of 180 . The odd eigenvector does
not couple in either the demagnetized or magnetized resonator. The reflection
coefficients are here −1 and +1 for the even and odd modes respectively.

10.4 Even and Odd Eigenvector of H-plane Waveguide
Tee Junction

The nature of the even and odd field patterns of the junction are reviewed and
clarified in this section. This is done in order to avoid confusion between the
two excitations. A tee junction is referred to as an E-plane geometry when its
side waveguide is on the narrow wall. It is described as an H-plane one when it
is on the wide wall. The junction here is an E-plane geometry. The even
eigenvector propagates down the side waveguide of the switch whereas the
odd one does not. An understanding of this feature may be obtained by scru-
tinizing the fields supported by a regular H-plane tee junction in Figure 10.5a
and b. These illustrate that the odd eigen-network does not produce a field
along the side waveguide of the junction, whereas the even eigen-network
does.

Propagation
direction
TE10

Evanescent
TE20

H field
direction

E field
direction

Electric
symmetry
plane

+

+

+– –

–

(a)

Figure 10.5 H-plane waveguide tee junction: (a) odd eigenvector and (b) even eigenvector.

Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators 141



10.5 Phenomenological Description of Two-port
Off/On and On/Off Switches

The geometry under consideration is an H-plane tee junction consisting of
two rectangular waveguides and a closed circular dielectric waveguide
mounted on the flat face of a circular piston. A classic property of this sort
of junction is that it is characterized by stop and pass bands between the
main waveguide ports depending upon the position of the back plate of
the circular waveguide.
The operation of a large-gap two-port switch is depicted in Figure 10.6. Its

reciprocal equivalent circuit is a series resonator in shunt with the waveguide.
The development of the magnetized state starts by decomposing the resonator
into its normal mode form.
It proceeds by removing the degeneracy between the frequencies of the circuit

by replacing the dielectric resonator by a magnetized magnetic insulator. The
equivalent circuit obtained in this way is a shunt resonator in shunt with the
waveguide. The transition between the off/on states is summarized in
Figure 10.6. The dual problem of the small-gap arrangement is indicated in
Figure 10.7.

Propagation
direction
TE10

H field
direction

Magnetic
symmetry
planeE field

direction

– –+

–

(b)

Figure 10.5 (Continued)
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Figure 10.6 (a–d) Operation of the two-port off/on E-plane switch.
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Figure 10.7 (a–d) Operation of the two-port on/off E-plane switch.



10.6 Eigenvalue Diagrams of Small- and Large-gap
E-plane Waveguide Tee Junction

The operation of E-plane ferrite switches using quarter-wave long resonators
mounted in the H-plane of a rectangular waveguide may be obtained by having
recourse to its eigenvalue problem. Its adjustment involves two steps. The first
fixes the reciprocal stop or pass band condition of the arrangement. The second
replaces the dielectric resonator by a gyromagnetic one. This section deals with
the first of the two.
The eigenvectors are here defined by even and odd field settings.

Ueven =
1

2

1

1
10 1a

Uodd =
1

2

1

−1
10 1b

and

U UT = 1 10 1c

The scattering parameters are

S11 =
ρeven + ρodd

2
10 2a

S21 = S12 =
ρeven−ρodd

2
10 2b

or

ρeven = S11 + S21 10 3a

ρodd = S11−S21 10 3b

The even and odd one-port reflection coefficients have unit amplitudes and
angles ϕeven and ϕodd, respectively.

ρeven = 1 exp − jϕeven 10 4a

ρodd = 1 exp − jϕodd 10 4a
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In the case of a short-circuit eigen-network. ϕ is

ϕ= 2 θ +
π
2

10 5a

In the case of an open-circuit one, it is

ϕ= 2θ 10 5b

θ is the electrical length of the eigen-networks.

10.7 Eigenvalue Diagrams of E-plane Waveguide
Tee Junction

The eigenvalue diagrams of the on/off and off/on switches are depicted in
Figure 10.8. The one-port even and odd eigen-networks obtained here are illus-
trated in Figure 10.9.

Im

Re

Re

Re

Re

Im

(a) (b)

(c) (d)

Im Im

ρeven ρeven
ρodd

ρodd

ρeven

ρeven

ρodd

ρodd

Figure 10.8 (a–d) Even and odd eigenvalue diagrams of two-port E-plane switches at a
reflection plane 90 away from the symmetry plane.

Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators 145



10.8 Eigen-networks of E-plane Tee Junction

The lumped element demagnetized and magnetized eigen-networks of
the E-plane tee junction are indicated in Figures 10.10 and 10.11.
The even and odd reflection angles on the axis of the junction with
ω2
0LC = 1 are

ρeven = −1

ρodd = −1

and

ρeven = + 1

ρodd = + 1

at the terminals of the network.

Gyromagnetic resonator

Gyromagnetic resonator
Gyromagnetic resonator

Piston

Piston
Piston

Electric
wall

H0

H0

H0

(a) (b)

(c) (d)

Gyromagnetic resonator
Piston

H0

Magnetic
wall

Figure 10.9 (a) Schematic diagram of reentrant switch using E-plane tee junction. (b)
Symmetry plane of reentrant switch using E-plane tee junction. (c) Oddmode eigen-network.
(d) Even mode eigen-network.
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The corresponding magnetized reflection coefficients are

ρeven = + 1

ρodd = −1

and

ρeven = −1

ρodd = + 1

The odd reflection coefficient is, in this instance, identical to that met in the
description of the demagnetized junction. That of the even one, however, has
its sign reversed. This feature is responsible for resetting the stop band of the
off/on switch to a pass band here.

10.9 Eigenvalue Algorithm

The conditions considered here produce two gap-resonator ratios for each trial
value of k0R from which the gap Seff and qeff may be extracted. The eigenvalues
of the large-gap stop band at the reference plane of the resonator are

ρeven = + 1 10 6a

θodd

S/C

ρodd

C/2

2L

θeven

ρeven

Figure 10.10 Eigen-networks of demagnetized E-plane junction.

θodd

S/C

ρodd

2L C
2

θeven

ρeven

Figure 10.11 Eigen-networks of magnetized E-plane junction.
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ρodd = + 1 10 6b

The eigenvalues at the small-gap pass band conditions at the same possible
pairs of terminals are indicated below,

ρeven = −1 10 7a

ρodd = + 1 10 7b

together with k0 and f0/fc constants

k0R= k0R even = k0R odd,
R
L
= constant 10 8a

S
L
=
Seven
L

=
Sodd
L

,
R
L
= constant 10 8b

Seven and Sodd are even and odd gaps and L is the length of the resonator.

10.10 Pass and Stop Bands in Demagnetized E-plane
Waveguide Tee Junction

A typical stop or pass band filter may be converted to a pass or stop band by either
retuning its even or odd eigen-networks. The transition between the stop and pass
bands indicated by Omori is an example of the former transformation. The odd
reflection coefficient of the junction is here fixed by the Faraday rotation
section and is unaffected by the gap between the flat face of the resonator and
the opposite narrow wall of the waveguide. The even reflection coefficient is
separately characterized by a gap-dependent effective dielectric constant
produced by its quasi-planar two-layer circuit. Its dynamic range is compatible
with a 180 phase reversal of the reflection coefficient thereby exchanging the
demagnetized stop and pass bands of the junction. The gap effective dielectric con-
stant resides between that of the ferrite insulator and free space. The dominant
solution, in the case of the E-plane circuit, is a stop band in keeping with a series
equivalent circuit in shunt with the main waveguide. Figure 10.12a and b illustrate
some simulations.
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Figure 10.12 (a) Stop band frequency response of demagnetized large-gap E-plane junction
(Helszajn et al. unpublished). (b) Pass band frequency response of demagnetized small gapH-
plane junction (Helszajn et al. unpublished).
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Operation of Two-port On/Off and Off/On Planar Switches
Using the Mutual Energy–Finite Element Method
Joseph Helszajn1 and David J. Lynch2
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2 Filtronic Wireless Ltd, Salisbury, MD, USA

11.1 Introduction

One technique that may be utilized to evaluate the immittance matrices of an
arbitrary n-port microwave network is the Green’s method. Another is the
mutual energy approach. The two differ in that the former involves reducing
a nonhomogeneous boundary value problem into a homogeneous one while
the latter consists of solving a number of homogeneous and nonhomogeneous
one-port problem regions. The eigenvectors appearing in the evaluation of the
cutoff spaces of isotropic and gyromagnetic planar circuits are therefore invalid
in this instance and must be recalculated from first principles. Since a typical
off-diagonal entry in an impedance or an admittance matrix of any n-port
may be obtained by considering a typical pair of ports, the solution of such a
circuit is sufficient for the description of an n-port problem. Scrutiny of such
a two-port indicates that a typical off-diagonal element may be deduced from
the knowledge of a calculation on a one-port nonhomogeneous circuit. The
evaluation of a typical diagonal element merely requires, of course, a calculation
of a one-port homogeneous circuit. A complete characterization of this sort of
circuit requires, therefore, the solutions of one-port networks only. If the elec-
tric fields due to each distinct one-port excitation are obtained using the finite
elementmethod, then the immittancematrices may be expressed in terms of the
same variables. The related scattering parameters of the circuit may then be

Reprinted with permission (Lynch, D. and Helszajn, J. (1997). Frequency response of N-port planar
gyromagnetic circuits using themutual energy – finite elementmethod. IEE Proc. Microw. Antennas
Propag. 144: 221–228).
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found by using the usual conformalmapping between the two descriptions. This
chapter employs the mutual energy technique in conjunction with the finite ele-
ment method to tackle this type of problem. The chapter includes the design of
On–Off andOff–On two-port stripline switches using a commercial solver. The
geometry utilized here has the ferrite puck in one half-space replaced by a
metal plug.

11.2 Impedance and Admittance Matrices fromMutual
Energy Consideration

The development of the open- or short-circuit parameters of a two-port planar
circuit begins with the conservation of power immittance definitions. Taking
the open-circuit parameters for the two-port circuit illustrated in Figure 11.1
by way of an example gives

I jj ZijI
i
i =

Ωi

Ej
i ×H

i∗
i ∙k dΩ 11 1

I ii ZiiI
i
i =

Ωi

Ei
i ×Hi∗

i ∙k dΩ 11 2

provided

Ej
i =V

j
i f i x,y 11 3

Hj
i = I

j
i gi x,y 11 4

and

Ωi

f i x,y × gi x,y ∙k dΩ= 1 11 5

Port j

Port i

Zij

Magnetic wall

Figure 11.1 Mutual impedance (Zij) in two-port planar
circuit with magnetic sidewalls.
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For a stripline circuit:

f i x,y =
1
H

11 6

gi x,y =
1

2W
11 7

and

Zi =
Vi

Ii
= η0

H
2W

11 8

Ej
i is the electric field produced at port i due to a current I

j
j at port j andH

i
i is the

magnetic field produced at port j due to a current I ii at port i. The planar circuits
defined by these boundary conditions are separately illustrated in Figure 11.2a
and b.

If Ej
i and Hi

i are separately evaluated with I jj = 1A and I ii = 1A, then

Zij =
Ωi

Ej
i ×H

i∗
i ∙k dΩ I jj = 1, I

i
i = 1 11 9

Zii =
Ωi

Ei
i ×H

i∗
i ∙k dΩ I ii = 1 11 10

The dual quantities for the two-port circuit in Figure 11.3 are

Yij =
Ωi

Ei
i ×Hj∗

i ∙k dΩ V j
j = 1,V i

i = 1 11 11

Iij = 0

I i
i = 1

I j
J = 1

I j
i = 0

E i, H i E j, H j

Magnetic wall

Magnetic wall

Resistive wall

(a) (b)

Figure 11.2 Problem region defined by (a) Iii = 1 and (b) Ijj =1
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Yii =
Ωi

Ei
i ×H

i∗
i ∙k dΩ V i

i = 1 11 12

The planar problem regions defined by these sort of two-port problems are
illustrated in Figure 11.4.
The topology of the n-port problem differs somewhat in this instance from

that of the two-port one. It is depicted in Figure 11.5.

Port j

Port iYij

Magnetic wall

Figure 11.3 Mutual admittance (Yij) in two-port planar
circuit with magnetic sidewalls.
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Electric wall

Resistive wall

V i
j = 0

V i
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i = 0

V j
j = 0

E i, H i E j, H i

(a) (b)

Figure 11.4 Problem region defined by (a) V i
i = 1 and (b) V j

j = 1
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11.3 Impedance and Admittance Matrices for
Reciprocal Planar Circuits

The derivation of a typical entry of the impedance matrix of an n-port planar
circuit begins by having recourse to the following vector relationship:

∇∙ Ej ×Hi∗ = Hi∗
∙ ∇×Ej

−Ej
∙ ∇×Hi∗ 11 13

The superscript i refers to the situation when port i is fed with an unit current
and all the other ports are open-circuited. Similarly, the superscript j corre-
sponds to the situation with a unit current at port j and all the others open-
circuited. Integrating both sides of the preceding equation over the volume
of the problem region and applying Gauss’s theorem to the left-hand side gives

S
Ej ×Hi∗

∙nds=
V

H i∗
∙ ∇× Ej

−Ej
∙ ∇×Hi∗ dv 11 14

where

s= s +
n

i

Ωi i= 1,2 11 15

s is the surface that completely encloses the whole problem region, s is that of
the sidewalls not occupied by the ports, and Ωi are the terminal or reference
planes at the ports of the problem region. In order to reveal a single term in
the port summation, all ports except port i or j are terminated in a magnetic
or electric wall.

Port i Port 2

Port 1

Port n

Magnetic wall

[Y ], [Z ]

Figure 11.5 n-Port problem region
defined by V i

i = 1
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The surface area of integration of the integrand on the left-hand side of
Eq. (11.14) can be reduced to that over the ports by having recourse to the fol-
lowing vector identities:

A×B ∙n= n×A ∙B

A×B ∙n= B× n ∙A

and noting that

n×E = 0onelectric walls

n×H = 0onmagnetic walls

Making use of the preceding conditions allows the surface integral over the sur-
faces in Eq. (11.14) to be replaced by one over the cross-section Ωi:

Ωi

Ej ×Hi∗
∙ndΩ=

V
H i∗

∙ ∇×Ej
−Ej

∙ ∇×Hi∗ dv 11 16

The left-hand side of the latter equation is now recognized as themutual imped-
ance between ports i and j of the circuit in Figure 11.1. This gives

Zij = −
V

H i∗
∙ ∇×Ej

−Ej
∙ ∇×Hi∗ dv I ii = 1, I

j
j = 1 11 17

The impedance entry corresponding to a one-port circuit is similarly defined by

Zii = −
V

H i∗
∙ ∇× Ei

−Ei
∙ ∇×Hi∗ dv I ii = 1 11 18

The evaluation of the impedancematrix for a reciprocal planar circuit continues
by recalling Maxwell’s curl equations for an isotropic medium.

∇×H = jωε0εfE 11 19

∇×E = − jωμ0H 11 20

Substitution of these identities into Eq. (11.18) allows it to be written in terms of
the electric field only.

Zij =
j

k0η0 V
∇× Ei∗

∙ ∇× Ej
−k20εfE

i∗
∙Ej dv 11 21

where

k20 =ω2ε0μ0

η0 =
μ0
ε0
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For the planar circuit case considered here the fields do not vary along the axis
of the resonator and only the z-component of the electric field exists. Introdu-
cing this condition into the preceding equation and noting the identity

∇×A ∙ ∇×B =
∂A
∂x

∂B
∂x

+
∂A
∂y

∂B
∂y

= ∇tA ∙ ∇tB

indicates that Zij may be written as

Zij =
jH
k0η0 S

∇tE
i∗
z ∙ ∇tE

j
z −k20εfE

ij
z ∙E

j
z 11 22

where s is the surface area of the circuit and H is the thickness of the substrate.
Typical port excitations for the planar circuit are illustrated in Figures 11.2
and 11.4.
The expression for Zij may be further reduced by expanding the first inte-

grand by having recourse to Green’s theorem and a suitable vector identity. This
gives

Zij =
jH
k0η0

−
S
Ej∗
z ∙∇

2
t E

i
z ds+

ξ
Ej∗
z
∂Ei

z

∂n
dt−k20εf

S
Ej∗
z ∙E

i
z ds

11 23

The contour integral quantity in the preceding expression is identically
zero since

∂Ei
z

∂n
= 0 onthe magnetic wall 11 24a

Ei
z = 0 atallports except port i 11 24b

Ej
z = 0 atallports except port j 11 24c

The required expression for Zij reduces to

Zij =
− jH
k0η0 S

Ei∗
z ∙ ∇

2
t + k

2
0εf Ej

zds 11 25

Scrutiny of this equation indicates that it has a similar form to that met in con-
nection with the variational expression for an isotropic resonator except that it
does not correspond to either a quadratic or a Hermitian form. This feature is in
keeping with the fact thatZij need not correspond to a positive real function. It is
recalled that the electric fields are solutions of the problem regions with the
ports open rather than short-circuited.
A typical self-impedance term is given without ado by

Zii =
− jH
k0η0 S

Ei∗
z ∙ ∇

2
t + k20εf Ei

zds 11 26

Operation of Two-port On/Off and Off/On Planar Switches 159



The entries of the admittance matrix are deduced in a similar fashion by
expanding the identity:

∇∙ Ei ×Hj∗ 11 27

where Ei andHj are the fields produced with V j
j = 1 or V i

i = 1 and all other ports
short-circuited. The required result is

Yij =
− jH
k0η0 S

Ei∗
z ∙ ∇

2
t + k

2
0εf Ej

zds V i
i = 1,V j

j = 1 11 28

Likewise, the self-admittance of the circuit is

Yii =
− jH
k0η0 S

Ei∗
z ∙ ∇

2
t + k20εf Ei

zds V i
i = 1 11 29

11.4 Immittance Matrices of n-Port Planar Circuits
Using Finite Elements

The admittance or impedance matrix of a circuit may be calculated once the
electric fields due to the two one-port circuits defined by ports i and j are
obtained. One method of doing so is again the finite element one.

The fields Ej
z and Ei

z are each solutions of a homogeneous boundary value
problem. When the finite element method is used, these are given in the usual
way by

Ej
z =

n

k = 1

uj
kαk 11 30a

Ei
z =

n

k = 1

ui
kαk 11 30b

where αk are the Lagrange interpolation polynomials and uj
k and u

i
k are the com-

plex coefficients that correspond to the discrete values of electric field at the
finite element nodes. For an n-port planar circuit problem the unknown coeffi-
cients are determined from the solution of the following set of linear simulta-
neous equations:

Aff Uf = − Afp Up 11 31

where

Aff = Dff −k
2
e Bff 11 32a
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Afp = Dfp −k2e Bfp 11 32b

Up is a columnmatrix containing the prescribed values of the electric field at the
coupling ports;U f is a columnmatrix containing the unknown values of electric
field; k2e is the wavenumber and [Bff], [Dfp] etc. are square or rectangular matri-
ces obtained from partitioning the [B] and [D] matrices.

Ui andUj correspond to an input at port i or j, with electric or magnetic walls
at the remaining ports.

Ui =
Uf

Up

i

, Uj =
Uf

Up

j

11 33

Substituting the expanded electric field into the expression for the impedance
matrix of an n-port isotropic circuit, after some algebraic manipulation yields

Zij =
− jH
k0η0

Ui∗ T
∙ D −k20εf B Uj 11 34

and

Zii =
− jH
k0η0

Ui∗ T
∙ D −k20εf B Ui 11 35

The [D] and [B] matrices coincide with the discretization of the energy func-
tional. Since these matrices have already been computed when the fields are
evaluated, the admittance and impedance matrices may be obtained by simple
matrix operations on the nodal field vector solutions.
The admittance parameters of an n-port planar isotropic circuits are given by

duality by

Yij =
jH
k0η0

Uj∗ T
∙ D −k20εf B Ui 11 36

The diagonal entries of the immittance matrix are obtained by replacing i and j
in the corresponding off-diagonal elements.

11.5 Frequency Response of Two-port Planar Circuits
Using the Mutual Energy–Finite Element Method

The mutual energy method may be used in conjunction with the finite element
method to evaluate the frequency response of any n-port planar circuit. One
simple two-port circuit is the stripline band elimination filter depicted in
Figure 11.6. It consists of a circular resonator with two orthogonal ports. The
frequency response of this circuit may be established by constructing its
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admittance matrix and having recourse to the bilinear mapping between it and
its scattering one. In this instance, for an input at port 1 the electric field at the
finite element nodes along the periphery subtended by port 2 are identically
zero. The dual case holds for an input at port 2. These two problem regions
are illustrated in Figure 11.7. The entries of the admittance matrix may be sim-
ply evaluated once the 2 one-port circuits have been solved for the electric field

vectors U1 and U2. The scattering parameters are readily computed from the

Ground plane
Dielectric disc

Circular
center conductor

Figure 11.6 Topology of two-port isotropic stripline band elimination filter.

Port 2

Port 1

Magnetic wall
Electric wall
Resistive wall

U1
U2+

Figure 11.7 Decomposition of band elimination filter into 2 one-port circuits for evaluation
of admittance matrix.
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normalized admittance ones by having recourse to the bilinear transformation
between the scattering and admittance matrices.

S =
I − Y
I + Y

11 37

Figure 11.8 illustrates the transmission characteristics of the circuit. Figure 11.9
depicts the finite elementmesh used. It consists of 34 second-order triangles con-
necting 107 interpolation nodes. Some results based on other classic numerical
techniques are superimposed on the illustration for the purpose of comparison.
The transmission zero evident from this diagram coincides with the frequency of
the first pair of degenerate counterrotating modes in this type of resonator.
One further interesting circuit, which is readily assessable to a solution, is the

bandpass circuit illustrated in Figure 11.10. It is similar to the band elimination
circuit except that its coupling ports are collinear instead of at right angles to
each other. Its two problem regions are illustrated in Figure 11.11. The finite
element mesh used for the solution of this circuit is illustrated in
Figure 11.12. The scattering parameters are separately depicted in Figures 11.13
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Mutual energy
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Figure 11.8 Transmission coefficient of stripline band elimination filter (R = 19.06 mm,
H = 3.2 mm, W = 7.78 mm, εf = 2.4).
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Port 2

Port 1

Figure 11.9 Finite element mesh
used in solution of stripline band
elimination filter.

Ground plane
Circular
center conductor

Dielectric disc

Figure 11.10 Topology of two-port gyromagnetic dipolar switch.

Port 2 Port 1 U1 U2

Magnetic wall
Electric wall
Resistive wall

Figure 11.11 Decomposition of band elimination filter into 2 one-port circuits for evaluation
of admittance matrix.



and 11.14. The equivalent result from themode-matchingmethod is also shown
for comparison. Scrutiny of these results indicates that this structure displays a
passband at the first pair of dominant degenerate modes of the decoupled prob-
lem region.

Port 2 Port 1

Figure 11.12 Finite element
mesh used in solution of
stripline dipolar switch.
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Figure 11.13 Reflection
coefficient for two-port dipolar
switch for κ/μ = 1 using mutual
energy and mode-matching
formulations.
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11.6 Stripline Switch Using Puck/Plug Half-spaces

A two-port On/Off stripline junction may also be realized by replacing one of
the two ferrite pucks by a metal plug. Figure 11.15 shows the geometry in ques-
tion. The junction is described by its radius R, the thickness of the half-spacesH,
the width W of the 50Ω striplines and the coupling angle ψ given by

sinψ =
W
2R

11 38

Figure 11.16a displays the reflection and transmission parameters of the demag-
netized switch. Figure 11.16b and c indicate the magnitudes and phase angles of
the even and odd eigenvalues. Figure 11.16d is the eigenvalue diagram of the
circuit. The details employed to obtain these data are R = 3.18 mm, H = 1.5
mm, R/H = 2.12, and ψ = 0.20 rad.
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Figure 11.14 Transmission coefficient for two-port dipolar switch for κ/μ = 1 using mutual
energy and mode-matching formulations.
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Ferrite

Metal plug

Figure 11.15 Schematic diagram of two-port stripline on/off switch using puck and plug
half-spaces.
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Figure 11.16 (a) Reflection and transmission parameters of the demagnetized switch, (b)
magnitude of even and odd eigenvalues, (c) phase of even and odd eigenvalues, and (d)
eigenvalue diagram.
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12

Standing Wave Solutions and Cutoff Numbers of Planar
WYE and Equilateral Triangle Resonators
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

12.1 Introduction

Important planar resonators with top and bottom electric walls and a magnetic
sidewall that have the symmetries of the three-port junction circulator are the
wye and equilateral triangle geometries. The chapter summarizes the dominant
mode cutoff number and standing wave pattern of each arrangement. This is
done for both a dielectric and a gyromagnetic substrate. The degenerate and
split cutoff numbers of planar resonators enter in the description of the half-
wave long cavities with top and bottom magnetic walls in Chapter 14.
The wye resonator is, in its simplest form, the junction of three quarter-wave

long transmission lines at 120 . Its geometry may be dealt with by having
recourse to a Finite Element (FE) solver. The quasi-wye resonator formed by
a central circular region symmetrically loaded by three open-circuited transmis-
sion lines is separately dealt with. One means of dealing with this structure is to
have recourse to various numerical techniques. The method utilized here is
based on the decomposition of the problem geometry into a symmetrical
three-port region bounded by three open-circuited lines. The resonant frequen-
cies of the symmetrical and counterrotating families of modes of the overall cir-
cuit are then obtained by satisfying the boundary conditions between the
impedance eigenvalues of the circular region and the impedance of a typical
open-circuited stub. Some calculations based on a FE solver are included for
completeness. It provides one means of constructing standing wave solutions
of the various modes of the geometry. A closed-form description of a quasi-
wye resonator consisting of an inner gyromagnetic region to which are
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connected three stubs is separately dealt with. It provides one means by which
the split frequencies of the resonator under the application of the gyrotropy may
be deduced. Although it is difficult to visualize the rotation of the equipotential
lines in a magnetized wye resonator, it is nevertheless possible to do so at one of
two possible triplets of ports. This may be done by taking suitable linear com-
binations of those of the demagnetized geometry. The chapter separately deals
with the equilateral triangle resonator.

12.2 Cutoff Space of WYE Resonator

The equipotential lines and cutoff numbers of the first three modes of a planar
wye resonator have been computed by having recourse to a FE program. The
schematic diagram of the resonator under consideration is depicted in
Figure 12.1.
The coupling angle (ψ ) of a typical stub is in this geometry defined by the

width (W) of the stub and the inner radius (r) of the circular plate. The geometry
is subdivided into 12 triangular elements and a third-order polynomial approx-
imation is made to the electromagnetic (EM) fields in each triangle. The degree
of the polynomial is fixed by the volume of the labor involved in setting up the
matrix problem. The number of triangles chosen is determined by the fact that
the amount of computer time taken to solve the problem is not linearly depend-
ent upon the number of triangles. A typical segmentation of a wye resonator is
illustrated in Figure 12.2. The equipotential lines of the fundamental transverse
magnetic (TM) mode in this resonator are indicated in Figure 12.3. Its cutoff
number has also been computed and is specified by

kR= 1 643 12 1

where

W

R

r

2ψ

Magnetic wall

Figure 12.1 Schematic diagram of wye resonator.
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k =ω μ0μrε0εr 12 2

εr is the relative dielectric constant and μr is the relative permeability of the fer-
rite material. λ0 is the free-space wavelength in meters. This cutoff number
applies for W/R = 0.40.
Figure 12.4a and b depict the first symmetric and the first higher-order TM

standing wave patterns in this type of geometry. The cutoff numbers are
kR = 3.33 and kR = 4.91, respectively.
The equipotential lines of the symmetric mode in Figure 12.4a have a max-

imum value at both the center and at the end of the stub, and a zero

Figure 12.2 Segmentation of wye resonator into finite elements.

Figure 12.3 Equipotential lines of dominant mode in wye resonator.
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approximately midway along the stub at kR = 1.67. The standing wave solution
in Figure 12.4b is also suitable for the construction of a three-port planar
circulator. The fields at the nodes have been normalized so that the field
distribution of a typical mode satisfies the condition:

ϕ2
nds= 1 12 3

The resonant modes produced by the program are orthogonal.

12.3 Standing Wave Circulation Solution
of WYE Resonator

The equipotential lines of the dominant mode in the isotropic resonator have
the symmetry encountered in the construction of planar circulators on magne-
tized substrates. It may therefore be utilized in the construction of a three-port
planar junction circulator. Circulation solutions in magnetized wye resonators
are constructed by taking a linear combination of two standing wave patterns of
the demagnetized wye resonator with one pattern rotated through 120 . The
construction is depicted in Figure 12.5 in the case of the dominant mode. It indi-
cates that an ideal circulation condition can be realized by coupling to the
wye resonator at one of two triplets of ports as illustrated in Figure 12.6.
The arrangement in Figure 12.6b produces a widely used commercial

–1.27

1.44
–1.87 1.87

0.91

–1.27

(a) (b)

Figure 12.4 (a) First symmetric mode in wye resonator and (b) first higher-order dominant
mode in wye resonator.
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quarter-wave-coupled three-port junction circulator whose outside radius is
of the order of a quarter-wave at the operating frequency of the device.

12.4 Resonant Frequencies of Quasi-wye
Magnetized Resonators

One possible variation of the wye resonator is the disk–stub gyromagnetic
arrangement consisting of a circular plate to which are connected three
short unit elements (UEs). The frequency may be deduced by visualizing

+

=

Figure 12.5 Equipotential lines of dominant mode in wye circulator.
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it as a circular region loaded by three UEs or by a six-port arrangement with
three of its ports closed by magnetic walls and the other three terminated by
suitable stubs. The equivalence between the two models suggests that the
first six impedance poles of the problem region are strictly speaking neces-
sary in order to reproduce the boundary conditions of the resonator.
The topology under consideration is indicated in Figure 12.7. It is fixed
by a coupling angle or shape angle ψ and the ratio of the radii Ri and R0.
Its degenerate or split resonance may be deduced by resonating the stubs

50 Ω

50 Ω
(a)

(b)

50 Ω

50 Ω

50 Ω

50 Ω

Figure 12.6 Circulation terminals of wye resonator for (a) “aa” terminals and (b) “bb”
terminals.

50 Ω

50 Ω

50 Ω

50 Ω

50 Ω

50 Ω

Figure 12.7 Schematic diagram of quasi-wye resonator using a circular disc loaded with UEs.
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with the eigen-networks of the circular gyromagnetic region. The descrip-
tion of a typical impedance pole of an m-port symmetrical region is a stand-
ard result in the literature.
A loosely coupled junction may be visualized as a symmetrical six-port net-

work with alternate ports open-circuited or as a three-port network.
If the eigenvalues are written in terms of the impedance poles of the three-

port network, the result is

Z0 =Z0 +Z3 12 4a

Z + =Z+1 +Z−2 12 4b

Z− =Z−1 +Z+2 12 4c

A typical pole of a three-port symmetrical isotropic junction is given below:

Zn =
j3ηrZr

π
sin nψ
nψ

2 Jn−1 kRi

Jn kRi
−n

1 + κ μ

kRi

−1

12 5

Zr is the characteristic impedance of a typical stripline.

Zr = 30πln
W + t + 2H

W + t
12 6

ψ is the coupling angle defined by

sinψ =
W
2r

12 7

μ and κ are the diagonal and off-diagonal elements of the tensor permeability.
The ratio κ/μ is known as the gyrotropy of the magnetic insulator.
Useful polynomial approximations for the Bessel functions for x between 0

and 3 and the recurrence formulae are shown in the table below, and are suf-
ficient for computational purposes.

Polynomial approximations:

J0 x = 1−2 2499997
x
3

2
+ 1 2656208

x
3

4
−0 3163866

x
3

6

+ 0 0444479
x
3

8
−0 0039444

x
3

10
+ 0 0002100

x
3

12

J1 x = x 0 5−0 56249985
x
3

2
+ 0 21093573

x
3

4
−0 03954289

x
3

6

+ 0 00443319
x
3

8
−0 00031761

x
3

10
+ 0 00001109

x
3

12

Recurrence formulae:

Jn+ 1 x =
2n
x
Jn x − Jn−1 x

J−n x = −1 nJn x
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The characteristic equation for the frequencies of the resonator is obtained by
resonating the degenerate impedance eigenvalues using suitable open-circuited
transmission lines. The characteristic equation for the first two pairs of degen-
erate resonances is now established by a transverse resonance condition
between the radial and uniform lines.

Z ± = jηrZr cot kL 12 8

L is the length of a typical open-circuited stub, defined by L = R0 − Ri. The phase
constant (k) has the meaning in Eq. (12.2);W, t, andH are the linear dimensions
of the uniform striplines.
The required condition is given by Eq. (12.9) for n = 1, n = 2.

3ψ
π

sinψ
ψ

2 J0 kRi

J1 kRi
−

1
kRi

−1

+
3ψ
π

sin2ψ
2ψ

2

J1 kRi

J2 kRi
−

2
kRi

−1

− cot kL = 0

12 9

The first two modes of the circular region have been retained in this formu-
lation. The mode chart of the demagnetized wye resonator is depicted in
Figure 12.8 for n = 1. The agreement between the calculations undertaken here
and some finite element method (FEM) calculations is separately indicated in
Figure 12.9.
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Figure 12.8 Cutoff wavenumber of the fundamental mode in a demagnetized wye
resonator.
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12.5 The Gyromagnetic Cutoff Space

The split cutoff space of a gyromagnetic resonator is also readily established.
The description of a typical pole of this sort of problem region is also a classic
result in the literature. The corresponding cutoff numbers of the split gyromag-
netic space are fixed by Eq. (12.10) for n = +1 and n = −2 and by Eq. (12.11) for
n = −1 and n = +2.

3ψ
π

sinψ
ψ

2 J0 kRi

J1 kRi
−

1 + κ μ

kRi

−1

+
3ψ
π

sin2ψ
2ψ

2

J−3 kRi

J−2 kRi
−2

1 + κ μ

kRi

−1

− cot kL = 0

12 10

3ψ
π

sinψ
ψ

2 J−2 kRi

J−1 kRi
+

1 + κ μ

kRi

−1

+
3ψ
π

sin2ψ
2ψ

2

J1 kRi

J2 kRi
−2

1 + κ μ

kRi

−1

− cot kL = 0

12 11

μ and κ are the usual diagonal and off-diagonal entries of the tensor permeabil-
ity. The ratio of κ and μ is known as the gyrotropy of the problem region.
Figure 12.10 indicates the split mode chart with ψ s = 0.20 rad obtained by
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Figure 12.9 Comparison between closed form and FEM calculations of cutoff space of wye
resonator.
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disregarding the n = ±2 modes. The opening between the split branches is
essentially independent of the shape angle but deteriorates rapidly below about
0.15 rad. Figure 12.11 depicts another result with ψ s = 0.40 rad.

12.6 TM Field Patterns of Triangular Planar Resonator

The TM-mode field patterns in a triangular-shaped demagnetized ferrite or die-
lectric resonator having no variation of the field patterns along the thickness of
the resonator are given by

Ez =Am,n, lT x,y

Hx =
j

ωμ0μe

∂Ez

∂y

Hy =
− j

ωμ0μe

∂Ez

∂x

Hz = Ex =Ey = 0

where Am,n,l is a constant. Figure 12.12 shows the geometry of the planar res-
onator discussed in this text.
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Figure 12.10 Split frequencies of planar gyromagnetic wye resonator in kR space using
closed-form formulation (ψ = 0.20 rad, Ri/R0 = 0.20, 0.40, and 0.60).
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For a magnetic boundary condition T(x, y) may be obtained by duality from
that of the TE mode with the following electric boundary conditions:

T x,y = cos
2πx
3A

+
2π
3

l cos
2π m−n y

3A

+ cos
2πx
3A

+
2π
3

m cos
2π n− l y

3A

+ cos
2πx
3A

+
2π
3

n cos
2π l−m y

3A

4.00
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Figure 12.11 Split frequencies of planar gyromagnetic wye resonator in kR space using
closed-form formulation (ψ = 0.20 rad, Ri/R0 = 0.20, 0.40, and 0.60).
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Figure 12.12 Schematic of microstrip triangular resonator.
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A is the length of the triangle side and m + n + l = 0.
Ez satisfies the wave equation:

∂2

∂x2
+

∂2

∂y2
+ k2m,n, l Ez = 0

where

km,n, l =
4π
3A

m2 +mn+ n2

The interchange of the three digits m, n, l leaves the cutoff number km,n,l

unchanged; similarly, the field patterns are retained, without rotation.

12.7 TM1,0,−1 Field Components of Triangular Planar
Resonator

The dominant mode in a planar triangular resonator is given with m = 1, n = 0,
l = −1. The result is

Ez =A1,0, −1 2cos
2πx
3A

+
2π
3

cos
2πy
3A

+ cos
4πy
3A

Hx = − jA1,0, −1ζe cos
2πx
3A

+
2π
3

sin
2πy
3A

+ sin
4πy
3A

Hy = j 3A1,0, −1ζe sin
2πx
3A

+
2π
3

cos
2πy
3A

where

k1,0, −1 =
4π
3A

ζe =
ε0εr
μ0μe

Figure 12.13 is a sketch of the magnetic and equipotential lines for the dom-
inant TM1,0,−1 mode in a triangular resonator.

12.8 Circulation Solutions

The cutoff numbers of the equilateral triangular planar resonator enters into the
description of prism cavities met in the design of fixed and switched junction
circulators. It fixes the relationship between the aspect ratio and the free space
and waveguide wavelengths of the geometry. Figure 12.14 illustrates some
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Figure 12.13 (a) Magnetic field pattern for dominant mode and (b) lines of equipotential
(A1,0,−1 = 1).

Figure 12.14 Schematic diagrams of waveguide circulators using quarter-wave-coupled
triangular resonators.
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quarter-wave coupled arrangements. While it is difficult to visualize rotation in
such resonators, circulation solutions may therefore be established by con-
structing a linear combination of isotropic resonators as shown in Figure 12.15.
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13

The Turnstile Junction Circulator: First Circulation
Condition
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

13.1 Introduction

The original waveguide junction circulator is the turnstile geometry described in
this chapter. It remains a classic commercial device to this day. Its geometry relies
on a single half-wave long Faraday rotation section with its flat faces separated
from the top and bottom walls of the rectangular waveguide by suitable gaps.
Geometries using single andpairs of quarter-wave long resonators have also been
described but are outside the remit of this chapter. The half-wave geometry may
also be visualized,with respect to the symmetry plane of the resonator, as far as its
midband frequency is concerned, as a pair of quarter-wave long resonators open-
circuit at its open flat face and short-circuit at its symmetry plane. The adjust-
ment of this class of junction is a classic eigenvalue problem, which is dealt with
in some detail in Chapters 15 and 16. The text is restricted to a description of the
specific engineering aspect entering into its operation.
The waveguide circulator dealt with here is often but not exclusively referred

to as the turnstile arrangement. Its adjustment involves a two-step procedure.
The first fixes the degeneracy between a pair of degenerate counterrotating
modes and a quasi in-phase mode. The second amounts to replacing the dielec-
tric resonator by a gyromagnetic one in order to remove the degeneracy
between the counterrotating modes. The purpose of this chapter is to deal with
the first condition.
The transition between the circular gyromagnetic waveguide and a typical

rectangular waveguide feed may be catered for by introducing ideal transfor-
mers at the terminals of the counterrotating eigen-networks. These transfor-
mers do not enter into the adjustment of the first circulation condition of
the junction.
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13.2 The Four-port Turnstile Junction Circulator

A classic nonreciprocal ferrite device, which relies on a Faraday rotation bit, is
the four-port turnstile circulator. It relies for its operation on the junction of a
45 circular waveguide and the intersecting of two rectangular waveguides, as
shown in Figure 13.1.
In order to appreciate the operation of this sort of circulator it is first of all

necessary to understand that of the conventional turnstile junction. The sche-
matic diagram in question is illustrated in Figure 13.1. This junction is a six-port
network, having four rectangular waveguide ports and two circular waveguide
ports. The scattering matrix of this circuit is given, in general, by

S =

α γ

γ α

δ γ

γ δ

β γ

γ β

α γ

γ α

ε 0

0 ε

−ε 0

0 −ε

ε 0

0 ε

−ε 0

0 −ε

β 0

0 β

13 1

Short-circuit

Ferrite (demagnetized)

Dielectric

Coil

Figure 13.1 Reciprocal four-port turnstile junction. Source: After Allen (1956).
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If the junction is matched,

α= 0 13 2

β = 0 13 3

δ= 0 13 4

γ = 0 13 5

ε=
1

2
13 6

The turnstile junction circulator is obtained from the conventional turnstile
junction by introducing a 45 Faraday rotation bit in the round waveguide. This
arrangement is shown in Figure 13.2.
The operation of the circulator in question may now be understood by con-

sidering a typical input wave at port 1. Such a wave produces no reflection at
port 1, decouples ports 3 and 6, established equal in-phase waves at ports 2
and 4, and produces a component at port 5. The wave at port 5, upon traversing
up and down, the 45 rotator section, is now aligned with port 6 at the plane of
the rectangular waveguide. Such a wave decouples ports 1, 3, and 5 and pro-
duces out-of-phase waves at ports 2 and 4, which have equal amplitudes to those
established by the original incident wave. The net effect is to produce a single
output at port 2. Similar considerations indicate that a wave at port 2 is emer-
gent at port 3 and so on in a cyclic manner.

Short-circuit

Ferrite

Dielectric

Coil

Figure 13.2 Nonreciprocal four-port turnstile junction. Source: After Allen (1956).
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13.3 The Turnstile Junction Circulator

The original realization of theH-plane three-port turnstile junction circulator is
depicted in Figure 13.3. It consists of a circular guide containing a longitudinally
magnetized ferrite section at the junction of three rectangular waveguides.
Figure 13.4 illustrates an E-plane configuration.
The operation of the turnstile junction may be understood by having recourse

to superposition. It starts by decomposing single input waves at port 1 (say) into
a linear combination of voltage settings at each port:

1

0

0

=
1
3

1

1

1

+
1
3

1

α

α2
+
1
3

1

α2

α

13 7

where

α= exp 120j 13 8

α2 = exp 240j 13 9

A scrutiny of the first, so-called in-phase generator setting indicates that it
produces an electric field along the axis of the circular waveguide, which does
not couple into it. The reflected waves at the three ports of the junction are
therefore in this instance unaffected by the details of the gyromagnetic wave-
guide. A scrutiny of the second and third so-called counterrotating generator
settings, indicates, however, that these establish counterrotating circularly
polarized alternating magnetic fields at the open face of the circular gyromag-
netic waveguide, which readily propagate. Since a characteristic of such a

Short-circuit Ferrite

Dielectric

Coil

Waveguide

Figure 13.3 H-plane turnstile junction circulator. Source: After Schaug-Patterson (1958).
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waveguide is that is has different scalar permeabilities under the two arrange-
ments it provides one practical means of removing the degeneracy between the
reflected waves associated with these two generator settings.
A typical reflected wave at any port is constructed by adding the individual

ones due to each possible generator setting. A typical term is realized by taking
the product of a typical incident wave and a typical reflection coefficient:

b1

b2

b3

=
ρ0
3

1

1

1

+
ρ−

3

1

α

α2
+
ρ+

3

1

α2

α

13 10

An ideal circulator is now defined as

ρ0 + ρ− + ρ+

3
= 0 13 11

ρ0 + αρ− + α
2ρ+

3
= −1 13 12

ρ0 + α
2ρ− + αρ+

3
= 0 13 13

To adjust this, and other circulators, requires a 120 phase difference between
the reflection coefficients of the three different ways it is possible to excite the
three rectangular waveguides. One solution is

Short-circuit

Ferrite

Dielectric

Coil

Waveguide

Figure 13.4 Schematic diagram of three-port E-plane turnstile circulator using single
turnstile resonator.
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ρ+ = exp −2j θ1 + θ + +
π
2

13 14

ρ− = exp −2j θ1 + θ− +
π
2

13 15

ρ0 = exp −2jθ0 13 16

provided that

θ1 = θ0 =
π
2

13 17

θ + = −θ− =
−π
6

13 18

The required phase angles of the three reflection coefficients are established
by adjusting the length of the demagnetized ferrite section so that the angle
between the in-phase and counterrotating reflection coefficients is initially
180 . The degenerate phase angles of the counter rotation reflection coefficient
are separated by 120 by magnetizing the ferrite region, thereby producing the
ideal phase angles of the circulator. These two steps represent the necessary and
sufficient conditions for the adjustment of this class of circulator. Figure 13.5
depicts the eigenvalue problem of the junction.

13.4 Scattering Matrix

The design of any junction circulator is incomplete without a formulation of its
scattering matrix. The bilinear relation between the eigenvalues of the junction
and its scattering matrix is defined in the usual way by

S11 =
ρ0 + ρ+ + ρ−

3
13 19a

S21 =
ρ0 + αρ+ + α2ρ−

3
13 19b

S31 =
ρ0 + α2ρ+ + αρ−

3
13 19c

where

α= exp 120j 13 20a

ρ± =
ξ0−Y±

ξ0 +Y±
13 20b

ρ0 =
ξ0− Y0

ξ0 +Y0
13 20c

The scattering matrix of the first circulation condition is defined by the eigen-
value diagram in Figure 13.6 as

190 Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches



0

0

0

1

1

1

2
1

1

2

3

3

+1

+1

+1

1

1

1

2

2

3

3

Ez – field

Uo excitation

U+1 excitation

l. exp .( j2π/3)
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l. exp .(–j2π/3)
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Figure 13.5 Eigen-solutions of the three-port circulator.
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S11 =
1
3

13 21a

S21 =
2
3

13 21b

S31 =
2
3

13 21c

That of the second circulation condition is defined by that in Figure 13.7.

S11 = 0 13 22a

S21 = 1 13 22b

S31 = 0 13 22c

The above scattering parameters satisfy the unitary condition without ado

S S∗− I = 0 13 23

ρ0

ρ+

ρ–

120°

Figure 13.7 Eigenvalue diagram of ideal three-port junction circulator.

ρ0

ρ+

ρ–

Figure 13.6 Eigenvalue diagram of reciprocal three-port junction for maximum power
transfer.
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13.5 Frequencies of Cavity Resonators

The basic resonator met in the design of turnstile geometries is a half-wave long
arrangement with an ideal or open magnetic sidewall and similar flat ones. The
governing equation is the dispersion condition in an infinite long waveguide
with a similar contour:

2π
λg

2

=
2π
λ0

2

εf −
2π
λc

2

13 24

where λ0 is the free-space wavelength, λc is the cutoff wavelength and is the
unknown of the problem, and λg is the wavelength of the waveguide.
The length of the cavity is denoted as L for a quarter-wave long cavity and 2L

for half-wave geometry:

λg = 4L 13 25

The unknown of the problem is λc. For a cylindrical waveguide,

2π
λc

=
1 84
R

13 26

For a triangular one,

2π
λc

=
4π
3A

13 27

R is the radius of the cylindrical resonator and A is the side of the triangular one.
Introducing this condition in the dispersion relationship and rearranging gives

2π
λ0

2

εf =
2π
2L

2

+
2π
λc

2

13 28

Noclosed formcutoffnumbers exist forother cross-sections suchas a clover leaf
waveguide.Anumerical procedure is thereforemandatory to deal with the general
problem.Onemeans of doing so is to recognize that the general solution coincides
with that of the planar resonator revealed by letting λg or Lmove to infinity. This
approach avoids the need to have recourse to a three-dimensional solver.

13.6 Effective Dielectric Constant of Open Dielectric
Waveguide

The characterization of the counterrotating frequencies of the open turnstile
resonator is incomplete without catering for the open sidewalls. This may be
done by constructing a one-to-one correspondence between an open waveguide
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with a dielectric constant εf and an equivalent waveguide with an ideal magnetic
wall but with an effective dielectric constant εeff.
Equivalent waveguide models are often employed to represent inhomogene-

ous waveguides or transmission lines. One possible equivalence between an
open dielectric waveguide with a relative dielectric constant εf and radius R pro-
pagating the HE11 mode and a circular waveguide with magnetic wall boundary
conditions with an effective dielectric constant εeff and effective radius Reff pro-
pagating the TM11 mode is depicted in Figure 13.8. εeff and Reff may be deter-
mined from knowledge of the phase constant of the inhomogeneous waveguide
and the complex power flow. If only the phase constant is required, or if only
matching between similar cross-sections is required, then an approximate
waveguide model in terms of an effective dielectric constant is sufficient and will
be adopted here in the first instance.
The characteristic equation for the propagation constant β of the open die-

lectric waveguide is a standard result and is reproduced here for completeness
sake:

Jn u
uJn u

+
Kn w
wKn w

ε1
ε2

Jn u
uJn u

+
Kn w
wKn w

= n2
1
u2

+
1
w2

ε1
ε2

1
u2

+
1
w2

13 29

ε1 is the dielectric constant of the ferrite region, ε2 is that of the surrounding
material and

u2 = k20ε1−β
2 R2 13 30

w2 = β2−k20ε2 R2 13 31

2 R

Open wall Magnetic wall

2Reff

εf εeff

Figure 13.8 Equivalence between open dielectric waveguide with imperfect magnetic walls
and equivalent waveguide model with idealized walls.
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where R is the radius of the ferrite, k0 is given in Eq. (13.33), Jn(u) is the Bessel
function of the first kind of order n, and Kn(w) is the modified Bessel function of
the second kind representing outward traveling waves.
The effective dielectric constant of the equivalent waveguide model with an

idealized magnetic wall may now be evaluated from knowledge of the phase
constant β of the open waveguide by making use of the following relationship:

β2 = k20εeff −k
2
c 13 32

where

k0 =
2π
λ0

13 33

kc =
1 84
R

13 34

Figure 13.9 illustrates the relationship between the effective dielectric con-
stant εeff and k0R for εf equal to 10, 12.5, and 15.
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e f
f
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6
0 0.2 0.4 0.6 0.8

koR
1.0 1.2

15

12.5

10

εf

Figure 13.9 Effective dielectric constant of open dielectric waveguide. Source: Reprinted
from Helszajn and Sharp (1986) with permission.

The Turnstile Junction Circulator: First Circulation Condition 195



This result indicates that for εf = 15, say, εeff = 12.2 for k0R = 0.60, 12.6 for
k0R = 0.70, 13.1 for k0R = 0.80, and 13.4 for k0R = 0.90. The origin of this dis-
crepancy may be separately understood by evaluating the power flow through
the waveguide Pi and outside it P0. Such a calculation indicates that for
k0R = 0.80 and εf = 16, say, Pi/P0 is of the order of 25.

13.7 The Open Dielectric Cavity Resonator

The cavity resonator in the design of a junction circulator is a half-wave long
geometry with open flat faces separated by dielectric spacers from top and bot-
tom pistons. The arrangement considered here is illustrated in Figure 13.10.
The calculation of the degenerate counterrotating frequencies of the open

resonator is well understood. A mode-matching procedure must separately sat-
isfy the boundaries between regions 1 and 2, 1 and 3, and 1 and 4 as defined in
Figure 13.11a. The boundary between 1 and 3 is usually neglected in that there is
little or no field in region 3. The one between regions 1 and 4 may be catered for
by replacing the open dielectric resonator by an equivalent closed one with an
effective dielectric constant εeff. The boundary between 1 and 2 is met by form-
ing a transverse resonance condition between the two. The dual geometry
obtained by placing an image or electric wall at the symmetry plane of
Figure 13.11a is indicated in Figure 13.11b. Its circuit topology is illustrated
in Figure 13.12.
The characteristic equation is

εeffk0
β0

cot β0L −
εdk0
α0

coth α0S = 0 13 35

Image
plane

Ferrite

Tefion

2 L2 b1

S

2R

b

S

Figure 13.10 Schematic diagram of a practical gyromagnetic resonator.
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Figure 13.11 (a) Schematic diagram of half-wave long open ferrite or dielectric resonator
loaded by image wall. (b) Schematic diagram of coupled quarter-wave long ferrite or
dielectric resonators loaded by image wall.

Ideal magnetic walls

Electric wall Electric wall

Ld Lf

ζd coth(αd S) ζf coth(βf S)

Figure 13.12 Circuit topology of closed composite gyromagnetic resonator.
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where L is the half space of the resonator, S is the thickness of the dielectric gap,
and εeff is the effective dielectric constant of the gyromagnetic resonator; it is
obtained from either measurement or calculation. εd is the relative dielectric
constant of the spacers, and

β0
k0

2

= εeff −
kc
k0

2

13 36

α0
k0

2

=
kc
k0

2

−εd 13 37

The condition in Eq. (13.35) may, for computational purposes, be written as

εeff
k0
β0

cot
β0
k0

L
A

k0A −εd
k0
α0

coth
α0
k0

L
A

1−q±

q±
k0A = 0

13 38

where q± is the gap factor, defined by

q± =
L

L+ S
13 39

The factor (1 − q±)/q± that appears in the characteristic equation may also be
written in terms of the gap-resonator ratio S/L:

1−q±

q±
=
S
L

13 40

The characteristic equation in Eq. (13.38) fixes the frequencies of the degener-
ate eigenvalues of the circulator. The gap S is here not, in practice, an independent
variable but is determined by the frequency of the in-phase eigen-network.
Figure 13.13a and b show quarter-wave-coupled turnstile junctions using single
and pairs of quarter-wave long resonators, open-circuited at one flat face and
short-circuited at the other.

13.8 The In-phase Mode

The dielectric gap in the design of a three-port junction circulator fixes the so-
called in-phase mode of the junction. A suitable mode with a magnetic wall at
the origin and an electric wall on the boundary is a quasi-planar geometry sup-
porting a TM0,1 mode. Its cutoff number is given by
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k0 εeffR= 2 40 13 41

The resonator here is a two-plate arrangement with dielectric constant layers
equal to εf and εd. A quasi-static approximation is obtained by taking the equiv-
alent series capacitance, which leads to

L+ S0
ε0εeff

=
L

ε0εf
+

S0
ε0εd

13 42

After simplification, the equivalent permittivity may be written as

εeff =
εdεf

q0εf + 1−q0 εd
13 43

where q0 is the gap factor, given by

q0 =
L

L+ S0
13 44

The connection between q0 and k0R is readily understood.
The exact model of the in-phase resonator is obtained by introducing a triplet

of electric walls at the symmetry plane of the junction. The arrangement is here
depicted in Figure 13.14.

ΔS

ΔS
2H

2H L

L

L

b

(a)

(b)

b1

b

Figure 13.13 Quarter-wave coupled turnstile junctions using single (a) and pair (b) of
quarter-wave long resonators.
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13.9 First Circulation Condition

The first of the two circulation conditions coincides with that for which the
curve between qeff and k0R and q± versus k0R for parametric values of the aspect
ratio R/L and A/L of the resonator intersect. The points of the first relationship
are compatible with a short-circuit boundary condition at the terminals of the
resonator; the second with an open-circuit at the same terminals. The required
condition is satisfied, provided

q0 = q± = q 13 45

q =
L

L+ S
13 46

where S is the gap between the open flat face of the resonator and the top wall of
the waveguide.
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The Turnstile Junction Circulator: Second Circulation
Condition
Joseph Helszajn1 and Mark McKay2

1 Heriot Watt University, Edinburgh, UK
2 Honeywell, Edinburgh, UK

14.1 Introduction

A classic junction circulator is the turnstile junction based on the topologies in
Figure 14.1. Its first circulation condition has been the subject of a large number
of numerical and experimental calculations. Its second circulation condition,
however, has been usually experimentally tackled by replacing the dielectric res-
onator by a gyromagnetic one. The purpose of this chapter is to deduce the sec-
ond condition in closed form. This is done by having recourse to the properties
of a quarter-wave long circular or triangular gyromagnetic waveguide together
with the introduction of ideal transformers at the terminals of the counterrotat-
ing eigen-networks of the junction. The chapter includes closed-form descrip-
tions of the quality factor, gyrator conductance, and susceptance slope
parameter of the one-port complex gyrator circuit of the junction. This is done
in terms of the properties of a quarter-wave long gyromagnetic waveguide open-
circuited at one flat face and short-circuited at the other together with the turns-
ratio of an ideal transformer at the terminals of the counterrotating eigen-
networks of the junction. A means of experimentally deducing the turns-ratio
of the ideal transformer from a measurement of the susceptance slope param-
eter is given special attention. The notion of ideal transformers at the terminals
of the eigen-networks of any junction has been introduced in Akaiwa (1974).
The literature of the turnstile junction circulator may be divided into one

group which deals with its phenomenological operation, another which deals
with its numerical description and still another which mainly deals with its
experimental adjustment.
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14.2 Complex Gyrator of Turnstile Circulator

The purpose of this section is to reiterate the first and second circulation con-
ditions in a slightly different way. This is done as a preamble to dealing with the
second circulation condition of the turnstile circulator. The elements entering

Back plate

Dielectric or
ferrite resonator
Dielectric sleeve

Piston

Gap

Ferrite

Mount

(a)

(b)

(c)

Figure 14.1 (a) Schematic diagram of waveguide junction circulators using single turnstile
resonators. (b) Reentrant turnstile junction using a quarter-wave long resonator. (c) Inverted
reentrant turnstile junction using a quarter-wave long resonator. (d) Reentrant turnstile
junction using a pair of quarter-wave long resonators. (e) Inverted turnstile junction using a
pair of quarter-wave long resonators.
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into its description are the susceptance slope parameter (b ), the gyrator con-
ductance (g), and the quality factor (QL). The two circulation conditions are here
deduced from the imaginary and real parts of the one-port gyrator circuit
instead of the scattering parameters of the junction.
An important concept that enters into the description of a junction circulator

is its complex gyrator immitance:

yin =
Yin

Y0
=
y+ + y−

2
− j 3

y+ −y−
2

, y0 = ∞ 14 1

This equation is exact provided the in-phase eigen-network is separately idea-
lized by a short-circuit boundary condition. The imaginary part of the complex
gyrator circuit, the so-called first circulation condition, fixes its midband fre-
quency. The real part, the so-called second condition, fixes its gyrator conduct-
ance. The definition of the complex gyrator circuit is illustrated in Figure 14.2.
The first circulation condition is obtained by reducing the gyrator conduct-

ance to zero,

y++ y−
2

= 0, y0 = ∞ 14 2a

− j 3
y+−y−

2
= 0, y0 = ∞ 14 2b

Symmetry
plane

Symmetry
plane

(d)

(e)

Figure 14.1 (Continued)
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The assumption here is a vanishingly small but not zero gyrotropy. This gives

y+= y− = y1, y0 = ∞ 14 3a

y1 = 0, y0 = ∞ 14 3b

The corresponding reflection coefficients are

ρ+= ρ− = 1 14 4a

ρ0 = −1 14 4b

The classic eigenvalue diagram obtained here is indicated in Figure 14.3.
The second circulation condition is defined by

y++ y−
2

= 0, y0 = ∞ 14 5a

Z0

Z0

Zin
*

Zin

V3
3

1

2

V3= I3= 0

Figure 14.2 Definition of complex gyrator circuit.

ρ0
ρ+

ρ–

Figure 14.3 Eigenvalue diagram of reciprocal three-port junction for maximum power
transfer.
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and

− j 3
y+−y−

2
= 1, y0 = ∞ 14 5b

The corresponding admittance eigenvalues are here given by

y+ =
− j 3
2

, y0 = ∞ 14 6a

y− =
j 3
2

, y0 = ∞ 14 6b

Application of the above two conditions fixes the gyrotropy of the junction.
The reflection angles ϕ0 and ϕ± are here displaced by 120 , as shown in
Figure 14.4. The reflection eigenvalues are

ρ± = 1 exp ± j
π
3

14 7a

and

ρ0 = −1 14 7b

14.3 Susceptance Slope Parameter, Gyrator
Conductance, and Quality Factor

A complete description of the one-port complex gyrator circuit requires knowl-
edge of the normalized susceptance slope parameter b of the imaginary part of
the gyrator admittance,

b =
ω0

2
∂b
∂ω ω=ω0

14 8

ρ0

ρ+

ρ–

120°

Figure 14.4 Eigenvalue diagram of ideal three-port junction circulator.
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where b is the susceptance. The parameter b is a measure of the bandwidth of
the circuit. The result here is

b =
ω0

2
y− −y+
ω+ −ω−

, y0 = ∞ 14 9

The above may be understood by recognizing that y± = 0 at ω = ω±. This gives

b=
y−
2
, at ω=ω+ 14 10a

b=
y+
2
, at ω=ω− 14 10b

Writing the difference between the admittance eigenvalues in terms of the gyra-
tor conductance separately gives the classic relationship:

g = 3b
ω+−ω−

ω0
, y0 = ∞ 14 11

A further relationship that enters into the description of a one-port G-STUB
circuit is its quality factor QL, given by

QL =
b
g

14 12

The result here is

1
QL

= 3
ω+−ω−

ω0
, y0 = ∞ 14 13

The split frequencies of the junction coincide with the 9.5 dB points in the fre-
quency response at one port with the other two terminated with matched loads.
This quantity fixes the gain-bandwidth product of the complex gyrator circuit

as is universally understood

2δ0 RL QL = constant 14 14

RL is the return loss (dB) and 2δ0 is the normalized bandwidth. The constant on
the right-hand side of this condition is determined by the nature and degree of
any matching network.

14.4 Propagation in Gyromagnetic Waveguides

The nature of the split phase constant β± in a longitudinally magnetized open
and closed circular waveguide are classic topics in the literature. Character-
istic equations for the calculations of the split phase constants in a gyromag-
netic waveguide with either electric or magnetic walls are available in the
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literature. The characteristic equation of the partially filled gyromagnetic cir-
cular waveguide with an electric wall is also dealt with in the literature.
A closed-form solution of the magnetic wall geometry based on perturbation
theory and one in a related isotropic waveguide are available in the literature.
The agreement between the former description and the exact solution is
excellent. A characteristic equation of the open anisotropic gyromagnetic
waveguide has historically been avoided in this sort of problem because of
its complexity and the simpler approximate formulation based on perturba-
tion theory has been used instead. The split phase constants obtained in this
way are given by

β2± =
ω0

c

2
εf μ C11κ −k2c 14 15

where εf is the dielectric constant of the magnetic insulator. The constant C11

embodies the variation of the alternating magnetic field over the cross-section
of the waveguide. For a cylindrical resonator, the value kc of the isotropic wave-
guide and the constant C11 are given by

kc =
1 84
R

14 16

C11 =
2

1 84 2−1
14 17

For a prism resonator, kc and C11 are given by

kc =
4π
3A

14 18

C11 =
3
π

14 19

The agreement between the exact and perturbation solution in the case of a cir-
cular gyromagnetic waveguide with an ideal magnetic wall is illustrated in
Figure 14.5.
This sort of waveguide displays both split propagation constants and split cut-

off frequencies. The split cutoff frequencies are determined with β± given by

β ± = 0 14 20

14.5 Eigen-network of Turnstile Circulator

The counterrotating eigen-networks are short-circuited unit elements (UEs) or
stubs, where admittances are pure imaginary numbers.
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y± =
Y0

ξ0
= jn2pξ± cot θ0 + θ ± 14 21

where θ0 is the insertion phase angle of the isotropic waveguide, θ± are the split
phase angles of the gyromagnetic waveguide, n is the turns-ratio. The ideal
transformers entering into the descriptions of the counterrotating networks
represent the discontinuity between the rectangular waveguide feeds and the
circular waveguide Faraday rotation section. ξ0 and ξ± are wave-admittance,
written as

ξ0 =
ε0
μ0

14 22a

ξ± =
εf

μ κ
14 22b

p = 1 in the case of a turnstile junction based on a quarter-wave long resonator
short-circuited at one end and open-circuited at the other. p = 1/2 in the case of

5

4

3

2

1

0
0.5 1.0

K

k0R√εf = 3.49

k0R√εf = 2.32

Perturbation

Perturbation

k0

β

Figure 14.5 Comparison between perturbation and numerical solutions in the case of a
circular gyromagnetic waveguide with an ideal magnetic wall.
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one using a half-wave resonator open-circuited at both flat faces. Expanding the
above equation near θ0 equal to π/2 gives

y± = − jn2pξ± tanθ ± 14 23

The required development proceeds by identifying the reciprocal and nonreci-
procal phase angles of the gyromagnetic waveguide.

β0 ±Δβ ± = k20εf μ C11κ −k2c 14 24

The diagonal element μ of the tensor permeability is one in a saturated magnetic
insulator. The split propagation constants are

Δβ ± = β ± −β0, radmm−1 14 25

where

β0 = k20εf −k2c 14 26a

β0 +Δβ ± = β20 k20εfC11κ 14 26b

The length L of the resonator is

θ0 = β0L=
π
2

14 27

The split phase angles of the eigen-networks are

θ + =Δβ + L 14 28a

θ− =Δβ−L 14 28b

The eigen-networks of the reentrant and inverted reentrant circulators using
a single quarter-wave long resonator are depicted in Figure 14.6a. The ones
using pairs of quarter-wave long resonators are indicated in Figure 14.6b.
The frequencies of all four arrangements are identical but the susceptance slope
parameters of the single quarter-wave arrangements are twice those of the
other two.

14.6 The Quality Factor of the Turnstile Circulator

A closed-form derivation of the quality factor of the turnstile circulator is read-
ily deduced. It starts by writing the split frequencies of the closed resona-
tor below:

k2+ εf −k
2
c −k

2
0εfC11κ =

π
2L

2
14 29a
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k2−εf −k
2
c + k20εfC11κ =

π
2L

2
14 29b

The assumption here is that the frequency variation of the nonreciprocal term
may be neglected compared to that of the reciprocal one. The required deriva-
tion continues by forming the difference between the above two equations:

k2+ −k
2
− εf −2k

2
0εfC11κ = 0 14 30

The result is

k+ −k−
k0

=
ω+ −ω−

ω0
=C11κ 14 31

provided

k++ k− ≈2k0 14 32

The result, in keeping with this class of junction, is a property of the gyro-
tropy only.

μ+ κ μ+ κ

μ– κ

μeff

ρ+

μ– κ

ρ+

ρ0

ρ–

ρ0

ρ–

O/C
μeff O/C

(a) (b)

Figure 14.6 Eigen-networks of reentrant and inverted reentrant turnstile circulators using (a)
single quarter-wave long resonator and (b) doublets of quarter-wave long resonators.
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14.7 Susceptance Slope Parameter of Turnstile
Junction

The susceptance slope parameter of the junction is constructed by forming the
split admittances (y±) at the split frequencies (ω±). The development assumes
that the nonreciprocal angles (θ±) of the gyromagnetic waveguide may be
neglected compared to the reciprocal parts. It is assumed further that the split
frequencies are not very far from the degenerate midband frequency. Introdu-
cing these assumptions in a typical admittance function gives the required
result.

b =
ω0

2
y+ −y−
ω+ −ω−

= n2pξeff
4
π

k0
β

14 33

where

ξeff =
εf
μeff

14 34a

and

1
μeff

=
1
μ+

+
1
μ−

14 34b

The gyrator conductance is the product of the susceptance slope parameter and
the split frequencies without ado.
The susceptance slope parameter here is that of a regular quarter-wave short-

circuited isotropic waveguide with an effective permeability μeff.
One way to extract the turns-ratio of the transformer of the counterrotating

eigen-networks is by satisfying the immittance eigenvalues y± at g = 1. Another
means of doing so is to have recourse to the definition of b .
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15

A Finite-Element Algorithm for the Adjustment of
the First Circulation Condition of the H-plane
Turnstile Waveguide Circulator
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

15.1 Introduction

The three-port turnstile circulator may be visualized as a five-port network con-
sisting of a cylindrical gyromagnetic waveguide having two orthogonal ports
that are closed with a short-circuit piston at the junction of three H-plane rec-
tangular waveguides. This sort of junction supports one in-phase eigen-network
and a pair of degenerate or split counterrotating eigen-networks. The first of its
two circulation conditions coincides with the maximum power transfer condi-
tion of the junction prior to the application of the gyrotropy. Its adjustment is an
eigenvalue problem. It fixes all the physical parameters of the circulator, except
for the gyrotropy. This paper describes an algorithm in conjunction with a
finite-element solver for the adjustment of this class of junction. It is met, pro-
vided the in-phase and counterrotating eigen-networks of the junction are 90
long and the corresponding reflection angles differ by 180 . The algorithm
introduced in this chapter may also be used to determine the split frequencies
of the junction by replacing the demagnetized permeability of the resonator, one
at a time, by appropriate scalar counterrotating permeabilities. An inverted
reentrant turnstile junction in half-height WR75 waveguide is characterized
by way of an example. A reentrant turnstile junction in standard WR75 wave-
guide is separately synthesized.
The chapter describes one universal algorithm for the solution of this class of

device. There are altogether three classic geometries using a single cylindrical
resonator and six employing a prism one. The possible configurations met in
connection with the cylindrical arrangements are illustrated in Figure 15.1.
The triplet of structures associated with each possible orientation of the prism
resonator is understood without ado.

217

Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches,
First Edition. Joseph Helszajn.
© 2019 Wiley-IEEE Press. Published 2019 by John Wiley & Sons, Inc.



The basic element is a quarter-wave-long open gyromagnetic resonator with a
gap between one open flat face and one waveguide wall and one short-circuited
flat face on the other waveguide wall. It determines the counterrotating eigen-
networks of the junction. The in-phase eigen-network is a quasi-planar geom-
etry that is fixed by the circulator composite structure made up of the ferrite and
the air or dielectric gap with top and bottom electric walls. The solution of each
geometry is separately fixed by the relative dielectric constant of the ferrite
material and the position of the operating frequency with respect to the cutoff
frequency of the waveguide. The permeability of any demagnetized ferrite must
also be taken into account. The solution of this class of junction involves two
independent and two dependent variables.
The dependent variables are the radial wavenumber k0R and the gap factor of

the junction (qeff); the independent ones are the wavenumber of the specifica-
tion (k0) and the aspect ratio of the resonator, radius (R), and length (L), (R/L).
A Finite Element (FE) solver is obviously essential in order to deal with the var-
ious configurations met with this junction. The algorithm developed in this
paper may also be used to determine the split frequencies of the resonator by
replacing the demagnetized permeability one at a time by counterrotating scalar
quantities.

Back plate
Dielectric or
ferrite resonator
Dielectric sleeve
Piston

Dielectric or
ferrite resonator
Dielectric sleeve

Piston

Magnet

Magnet

Dielectric sleeve

L1

L

S 2 R

2 R1

Ferrite

Piston

Figure 15.1 Schematic diagrams of waveguide junction circulators using single turnstile
resonators.
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TheH-plane waveguide turnstile junction circulator is only one geometry that
relies for its operation on a turnstile resonator. Figure 15.2 illustrates an inte-
grated surface waveguide that relies on the same principles. The second circu-
lation condition of this type of junction is established by replacing the dielectric
by a gyromagnetic one. This chapter includes some data on this condition.

15.2 Bandpass Frequency of a Turnstile Junction

The requiredmidband relationships between the variables entering into the first
circulation condition of the junction are satisfied, provided the in-phase and
counterrotating eigenvalues are 90 long and 180 out of phase.

s0 = −1 15 1a

s+ = s− = 1 15 1b

The eigenvalues are, for the purpose of calculations, related to the scattering
matrix of the junction in the usual way.

Rivets Dielectric spacer

Gyromagnetic
resonator

Metal mount

Low-impedance
waveguide

Substrate

Figure 15.2 Schematic diagram of integrated substrate waveguide circulator using turnstile
resonators.
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s0 = S11 + 2S21 15 2a

s+ = s− = S11−S21 15 2b

The eigenvalues are the reflection coefficients revealed at any port by each of
the three possible generator settings or eigenvectors of the junction. These have
unit amplitude and differ from each other only in phase.

s0 = 1 exp− j2θ0 15 3a

s± = 1 exp− j2 θ ± +
π
2

15 3b

The eigenvalue diagram at the pass band frequency of a reciprocal junction is
indicated in Figure 15.3a. It is satisfied, provided

S0
S+1

S–1

S+1

S+1

S–1

S–1

S0

S0

Re

Im(a)

(b)

(c)

Re

Re

Figure 15.3 (a–c) Eigenvalue diagrams of reciprocal three-port junction.
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θ0 = θ ± =
π
2

15 4

θ0 and θ± are the electrical lengths of the in-phase and counterrotating eigen-
networks, respectively. The π/2 term in the degenerate counterrotating reflec-
tion coefficients is associated with the short-circuit boundary condition that
exists at the axis of the problem region. The reflection eigenvalues are also
sometimes expressed in terms of the reflection angles ϕ0 and ϕ±:

s0 = 1 exp− jϕ0 15 5a

s± = 1 exp− jϕ± 15 5b

The reflection coefficient associated with this diagram is S11 = 1/3. Two other
eigenvalue diagrams in the vicinity of the required solution are separately shown
in Figure 15.3b and c.
The amplitudes of the reflection coefficients are also in these instances equal

to that of the ideal solution but the reflection angles do not, however, corre-
spond to that of the pass band.

15.3 In-phase and Counterrotating Modes of Turnstile
Junction

The degenerate counterrotating modes entering into the adjustment of a recip-
rocal turnstile junction are approximately specified by a pair of HE11 modes in
an open dielectric waveguide supporting an open magnetic wall at one flat face
and a short-circuit at the other.
Its adjustment involves a gap factor:

q± =
L

L+ S±
15 6a

The symmetric mode is a quasi-planar TM010 one with top and bottom elec-
tric walls and an open sidewall. It does not propagate along the axis of the res-
onator. Its adjustment involves a gap factor:

q0 =
L

L+ S0
15 6b

The unknowns of the problem region are the aspect ratio (R/L), the radius of
the resonator (R), and the length of the gap (s) between its open face and the
opposite waveguide wall. The latter two quantities are usually expressed in
terms of the radial wavenumber (k0R) and a gap factor (qeff):

qeff =
L

L+ S
15 7
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All the other quantities including the wavenumber k0 entering into the
description of the junction are independent variables and are specified as a pre-
amble to the optimization subroutine.
An approximation of the first circulation condition of a degree-2 junction

may be established by replacing s± = 1 by s± = −1 and s0 = −1 by s0 = 1 in
the degree-1 solution. This condition is usually satisfied by introducing suitable
quarter-wave long or alternate line impedance transformers at each port. The
variables in addition to those met in connection with the degenerate junction
are the electrical angle(s) and the impedance(s) of a typical transformer.

15.4 Reference Plane

The reference plane of the solution is obtained here and elsewhere by replacing
the resonator region by a metal plug. The assumption here, if nothing else, is the
extent of any leakage by the open apertures on either side of the post into the
output waveguides. Measurements indicate that this leakage is of the order of
2% in each output waveguide. It furthermore assumes that the electrical planes
of both the in-phase and counterrotating eigenvalues have a common surface
with that of the mechanical boundary of the open resonator. The phase constant
associated with the nonuniform radial region connecting the dielectric resona-
tor to a typical rectangular waveguide is dealt with by separately extremizing
this problem.
A property of such a region is that an open-circuit is not mapped into a short-

circuit over the same length that a short-circuit is mapped into an open-circuit.
One consequence of this feature is that the angle between the reflection angles
at the resonator terminals is not preserved at the terminals of a typical wave-
guide. Furthermore, the frequency of the 9½ dB points in the return loss of
the junction no longer coincides with the real axis of the Smith chart but resides
instead either side of it. This effect is of issue in the design of degree-2 junctions.
The organization of the junction has also a significant influence on the fringing
field so that each possible structure must be, strictly speaking, separately eval-
uated. Figure 15.4a and b indicate the calibration process for both reflection and
transmission parameters of the junction at its reference terminals.

15.5 FE Algorithm

The adjustment of the reciprocal turnstile junction is met when the in-phase
and degenerate counterrotating eigen-networks are degenerate. This condition
is satisfied, provided:
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k0R
0 = k0R

± = k0R
R
L
= constant, k0 = constant 15 8a

q0 = q± = qeff
R
L
= constant, k0 = constant 15 8b

The first condition fixes the radius of the resonator, R, and thereafter its
length, L. The gap, S, between the open face of the resonator and the image wall
of the junction is fixed by the second condition in terms of the gap factor defined
in the last section.
The design procedure, in the absence of fringing, is straight forward. The in-

phase eigenvalue fixes the gap factor and gives a relationship between S and L.
The absolute values of these two quantities are then fixed without ado by the
counterrotating ones. In the presence of fringing, however, the situation is more
complicated in that the two conditions are now coupled.

Electric wall

(a)

(b)

Magnetic wall

ϕref

ϕref

ϕref

ϕ21 = ϕ21 (between the flanges) 

S21(between the flanges) = |S21| ∠ ϕ21(between the flanges)

ϕ21

Figure 15.4 Construction of reference terminals of resonator: (a) reflection coefficient and (b)
transmission coefficient.
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One general approach commences by constructing in-phase and counterro-
tating polynomials connecting q0 and q± to k0R, which satisfy s0 = −1 and s± = 1
for parametric values of R/L.

q0 = F k0R ,
R
L
= constant, s0 = −1 15 9a

q± = F k0R ,
R
L
= constant, s± = 1 15 9b

The preceding polynomials may be constructed by having recourse to an FE
procedure or some other numerical method. The two polynomials are thereaf-
ter equated and combined into a single characteristic equation involving the
variable k0R for discrete values of R/L.

q± −q0 = 0,
R
L
= constant, s ± = 1, s0 = −1 15 10

The roots of this equation for parametric values of R/L provide the link
between the latter variable and k0R. The calculation is completed once the
actual gap factor qeff is evaluated in terms of the same roots. This may be done
by having recourse to either of the two original polynomial representations of
the first circulation condition:

qeff = q± = q0 = 0,
R
L
= constant, s ± = 1, s0 = −1 15 11

It is convenient, for the purpose of engineering to assemble the specific solu-
tions in polynomial form:

k0R= P
R
L

, s± = 1, s0 = −1 15 12a

qeff =Q k0R , s ± = 1, s0 = −1 15 12b

15.6 FE Adjustment

The normalized variables introduced here are desirable in order to store univer-
sal data. Absolute quantities such as R, L, and S are, however, necessary in order
to initialize any numerical procedure. A moot point in the organization of any
calculations is the description of the geometry in terms of realistic physical vari-
ables. The initial choices adopted here rely on historic experimental data on an
inverted reentrant turnstile junction in standard WR90 waveguide. An inverted
reentrant turnstile junction in half-height WR75 waveguide is, however,
adopted by way of illustration of the proposed algorithm in this work. Taking
R/L = 2.0 produces initial values for k0R and qeff of 0.8 and 0.85, respectively.
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Figures 15.5 and 15.6 show the connections between k0R and q0 and q± for a
resonator with an aspect ratio R/L = 2.0 for a reciprocal inverted reentrant turn-
stile junction using a dielectric resonator with a relative dielectric constant of
15.0 in half-height WR75 waveguide at a frequency of f0/fc = 1.683.
The respective polynomial solutions are

q0 = −5 4122 k0R
2 + 6 3056 k0R −0 8604,

R
L
= 2 0 15 13a

q± = −0 4283 k0R
2−0 5015 k0R + 1 4139,

R
L
= 2 0 15 13b

Repetitive recourse to the reference plane of the junction is avoided by varying
qeff for parametric values of k0R at k0 rather than the other way round.
Figure 15.7 illustrates a typical flow chart for the evaluation of either quantity.
A typical calculation amounts to partitioning the k0R interval intom segments

and the qeff one into n segments. A typical regular grid is produced with m = 6
and n = 4 implying 24 problem drawings and six calibration steps or drawings
each of which involves replacing the resonator geometry by a metal pillar of the
same radius. One process proceeds by constructing the polynomial relationship
between qeff and both ϕ0 and ϕ± for any specific values of k0R.
These polynomials are then employed to solve for q0 at θ0=90 and q± at

θ±=90 or equivalently ϕ0 = π and ϕ± = 0. The in-phase and counterrotating

1

0.95 WR 75
b1= b/2
f0/fc= 1.6830.9

0.85

0.8

0.75

0.7

0.65

k0R

0.6

0.55

0.5
0.5 0.6 0.7

q+

0.8 0.9 1

q+ = –0.4283(k0R)2

        –0.5015k0R + 1.4139

Figure 15.5 k0R versus q± of inverted reentrant turnstile junction in half-height WR75
waveguide for counterrotating mode (f0/fc = 1.683, R/L = 2.0).
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eigenvalues of the geometry are typically located in the space defined by
0.60 ≤ k0R ≤ 0.90 and 0.60 ≤ qeff ≤ 0.80.
The characteristic equation from which k0R may be deduced is

−5 4122 k0R
2 + 6 3056 k0R −0 8604 + 0 4283 k0R

2 + 0 5015 k0R

−1 4139 = 0,
R
L
= 2 0

15 14

The root of this characteristic equation is k0R equals 0.783. The correspond-
ing value of qeff is 0.758.
A scrutiny of the graphical solution in Figure 15.8 indicates that the angle

between the two polynomials is, at the intersection point, relatively small. This
suggests that the failure to accurately reproduce the boundary conditions of the
problem region is not, in practice, as important as once supposed. A flow chart
of this process is indicated in Figure 15.9.
Both the adopted contour of the reference plane of the junction and the char-

acterization of the geometry of the resonator are extremized in the same way.
The solution produced by the proposed algorithm is unique to the wavenum-

ber employed in the calculation. This remarkmay be understood by recognizing

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

k0R

0.6

0.55

0.5
0.5 0.6 0.7

q0

0.8 0.9 1

WR 75
b1= b/2
f0/fc= 1.683

q0 = –5.4122(k0R)2

       +6.3056k0R –0.8604

Figure 15.6 k0R versus q0 of inverted reentrant turnstile junction in half-height WR75
waveguide for in-phase mode (f0/fc = 1.683, R/L = 2.0).
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Enter k0, εr, μd, R/R1, L1

Fix R/L

Calculate R,L

Calculate S

Extremize the problem region Extremize reflection plane

Obtain scattering parameters at k0

Calculate reflection eigenvalues s0 or s+

Calculate reflection angles ϕ0 or ϕ+

Increase qeff in 0.05 steps until 0.9

Extract q0 and q+ When θ0= 90 or θ0=180
and θ+ = 90 or ϕ+= 0 or 360

Choose starting value for k0R (0.7)

Increase k0R in 0.05 (max 0.9)

Form q0= F(k0R)

Repeat to form q+= Fʹ(k0R)

Form polynomials
θ0  or ϕ0and θ+ or ϕ+ versus qeff

Calculate θ0= ϕ0/2 θ+= (ϕ+–π )/2

Choose starting value for qeff (0.40–0.90)

Figure 15.7 Flowchart for the solution of either s0 = −1 or s± = 1 at the resonator edge.
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0.95
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0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5
0.5 0.6

q0= –5.4122 (k0R)2+ 6.3056k0R–0.8604

q+= –0.4283(k0R)2–05015k0R+1.4139

0.7
q0 or q+

0.8 0.9 1

WR 75
b1= b/2
f0/fc= 1.683

k0R

Figure 15.8 First circulation condition of inverted reentrant turnstile junction in half-height
WR75 waveguide (f0/fc = 1.683, R/L = 2.0).

Enter q0=F(k0R) q+= Fʹ(k0R)

Solve F(k0R) –Fʹ(k0R) = 0

qeff = F(k0R) = Fʹ(k0R)

Figure 15.9 Flowchart algorithm for first circulation condition.
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that the same combination of the product k0R but at a different value of k0 will
produce a different R–L–S envelope in conjunction with a perturbation in the
existing fringing field of the geometry.
The shortcoming of the approximate closed form solution is that, of course, it

does not account for any fringing field in its description. In order to accurately
scale any existing design, it is therefore essential to respect all the parameters
entering into its description and to recalculate the geometry whenever the fre-
quency of the device or the cutoff frequency of the waveguide or the details of
the junction are modified.
One way to verify the robustness of any solution is to resort to experiment or

analysis. Figure 15.10 depicts a Smith chart representation of the structure
under consideration. It accurately reproduces the pass band frequency of the
junction as asserted. A scrutiny of this result suggests that the frequency vari-
ation of the in-phase eigenvalue may be neglected compared to those of the
counterrotating eigenvalues. It also indicates that the frequency variation of
S11 is more or less that of s±.
The permeability met in connection with a demagnetized magnetic insulator

must be accurately accounted for separately. It is related to the magnetization of
the material and the frequency by (Schlömann 1970)

14.09 GHz

12.79 GHz

S+

S11

S0

Figure 15.10 Smith chart of the first circulation condition of inverted reentrant turnstile
junction in half-height WR75 waveguide (f0/fc = 1.683, R/L = 2.0).
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μd =
1
3
+
2
3

1−
γM0

ω

2
1
2

15 15

γ is the gyromagnetic ratio 2.21 × 105 (rad s−1 per Am−1), M0 is the saturation
magnetization (Am−1), and ω is the radian frequency (rad s−1).
Most experimental data in the literature on this class of junction has actually

been restricted to ones using demagnetized gyromagnetic resonators. This
effect is separately dealt with in Schlömann (1970), Rado (1953), Green and
Sandy (1974), and Helszajn and Sharp (1986, 2011).

15.7 The Reentrant Turnstile Junction in Standard
WR75 Waveguide

The robustness of the algorithm introduced for the adjustment of the three-port
turnstile circulator in this chapter has been separately experimentally verified by
fabricating one junction in standard waveguide based on an existing simulation
(Hauth 1981). Its Smith chart solution is reproduced in Figure 15.11 for com-
pleteness sake.
The arrangement under consideration is a reentrant instead of inverted reen-

trant turnstile geometry. A full-height waveguide assembly has been chosen for
this purpose in order to avoid the complication of making transitions between
half- and full-height waveguide.
Its details are summarized by

k0 = 0 278radmm−1

R
L
= 2 0

k0R= 0 858

qeff = 0 536

Figure 15.12 compares the calculated and measured frequency responses of
the solution in question.

15.8 Susceptance Slope Parameter of Degree-1
Junction

The susceptance slope parameter of a degree-1 demagnetized junction, which is
a measure of its bandwidth, may be extracted by constructing its frequency
response about its center frequency at one typical port with the other two ter-
minated in matched loads. One formulation of this parameter, in the case for
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Figure 15.12 Comparison between calculated (---) and experimental (––) frequency
response of reentrant turnstile junction in WR75 waveguide at each port.
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Figure 15.11 Smith chart of reentrant turnstile junction in standard WR75 waveguide (f0/
fc = 1.683, R/L = 2.0).



which the frequency response of the in-phase eigen-network can be neglected
compared to those of the degenerate ones is (Helszajn and Sharp 2003)

b =
B
Y0

=
2 3 VSWR 2−2 5 VSWR +1 2 VSWR

1 2

2δ0
15 16

where

2δ0 =
ω2−ω1

ω0
15 17

ω1,2 are band edge frequencies and ω0 is the midband frequency. VSWR is the
voltage standing wave ratio at ω1,2. The factor 2/3 in Eq. (15.16) connects the
susceptance slope parameter of the reciprocal junction to that of the complex
gyrator circuit of the corresponding circulator. The susceptance slope param-
eter of a turnstile junction is in practice dependent on the aspect ratio of the
resonator. The normalized value obtained with half-height waveguide in the
example shown in Figure 15.13 is 14. The corresponding value in standard
WR75 is half that displayed by the half-height waveguide.

Frequency (GHz)

12.00 12.50 13.00 13.50 14.00 14.50

|S
11

| (
dB

)

0
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13.27 GHz

12.79 GHz 14.09 GHz

VSWR 3 : 1

WR 75

f0/fc= 1.683

Figure 15.13 Frequency response of first circulation condition of inverted reentrant turnstile
junction in half-height WR75 waveguide (f0/fc = 1.683, R/L = 2.0).
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15.9 Split Frequencies of Gyromagnetic Resonators

The solver introduced in connection with the first circulation condition of the
turnstile circulator may also be employed to approximately investigate, one at a
time, the split frequenciesω± of the gyromagnetic resonator on either side of the
isotropic one ω0. A knowledge of these frequencies allows the quality factor QL

of the gyrator circuit of the magnetized junction to be evaluated without
recourse to a magnetic solver. This may be done by replacing, one at a time,
the demagnetized permeability μd of the magnetic insulator by counterrotating
partially magnetized scalar permeabilities μ±:

μ± = μp C11κp 15 18

C11 is a constant met in connection with the characteristic equation of the cutoff
space of a planar resonator with top and bottom electric walls and a magnetic
sidewall. One useful approximation for a cylindrical resonator is (Helszajn and
Tan 1975b):

C11 =
2

kcR
2−1

, 0 ≤ κp ≤ 0 50 15 19

where

kcR= 1 84

and

kc = k0 εfμeff 15 20

μeff =
μ2p− C11κp

2

μp
15 21

The calculations in this section assume a saturated magnetic insulator for which

μp = 1 15 22

κp =
γM0

μ0
15 23

The split frequencies ω± coincide with s± = 1 at the resonator terminals.
Figure 15.14 shows the eigenvalue diagrams at ω = ω0.
One experimental procedure from which the split frequencies of the resona-

tor can be extracted is obtained by determining the frequencies at which the
return loss of the terminated junction passed through 9½ dB. This result is read-
ily recognized both here and elsewhere by examining the connection between
the reflection coefficient S11 and the eigenvalues of the junction.

S11 =
s0 + s + + s−

3
15 24
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The quality factor is given in terms of ω0 and ω± by

1
QL

= 3
ω+ −ω−

ω0
15 25

This quantity fixes the gain bandwidth product of the complex gyrator circuit as
is universally understood.

2δ0 RL QL = constant 15 26

S0
S+

S–

S0

S+
S–

ϕ+

ϕ–

S0

S+
S–

μd

μd –C11κp

ω = ω0

ω = ω0

μd +C11κp

ω = ω0

Figure 15.14 Eigenvalue diagrams associated with scalar counterrotating permeabilities.

234 Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches



RL is the return loss (dB), 2δ0 is the normalized bandwidth. The constant on
the right-hand side of this condition is determined by the nature and degree of
any matching network.
The frequency responses corresponding to μd = 1.0 and μ± = 0.7, 1.3 are indi-

cated in Figure 15.15. The split frequencies in this picture correspond to the
eigenvalue diagrams in Figure 15.3b and c.
The condition associated with these two split frequencies are (Helszajn and

Sharp 1986)

1
Z ±

=Z0 15 27

Either condition ensures that the reflection angles are 180 out of phase but
neither guarantees that the eigen-networks are commensurate. The prevailing
condition depends on whether the in-phase eigen-network is larger or smaller
than 90 . In a uniform transmission line the above relationship should hold at
any plane from the load.
Figure 15.16 depicts the frequency response of the return loss at port 1 with

the other two ports terminated in matched loads, in half-height WR75 wave-
guide, for parametric values of the gyrotropy (κ). Each magnetization step is
associated with a different effective permeability (μeff), the effect of which is
to perturb the midband frequency of the junction. In keeping with the
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Figure 15.15 9½ dB frequencies corresponding to μd = 1.0 and μ± = 0.7, 1.3.
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numerical data, the permeability is lowered as the magnetization is increased
thereby increasing the frequency. A saturation magnetization μ0M0 equal to
0.1600 T corresponds with κ equal to 0.338 at 13.25 GHz. The corresponding
normalized split frequency (ω+ −ω−)/ω0 is equal to 0.196. The value obtained
by having recourse to the split cutoff space of a planar gyromagnetic resonator
is 0.220. The quality factor QL associated with this gyromagnetic splitting is
equal to 2.63. It is compatible with the realization of communication circulators
with commercial specifications.
The exact split frequencies of the junctionmay also be readily calculated using

a suitable commercial solver.
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The E-plane Waveguide Wye Junction: First Circulation
Conditions
Joseph Helszajn1 and Marco Caplin2

1 Heriot Watt University, Edinburgh, UK
2 Apollo Microwaves Ltd, Dorval, Quebec, Canada

16.1 Introduction

The E- and H-plane three-port waveguide wye turnstile junction circulators are
essential devices in most telecommunication systems. Whereas the H-plane
geometry has been given much attention in the literature, the E-plane has
received less attention. The purpose of this chapter is to investigate the first cir-
culation condition of the latter geometry. The transmission parameters of the
scattering matrix are here all negative. The first circulation condition of the E-
plane circulator is characterized by either a pass or stop band depending on the
indices of the axial and radial mode of the resonator.
The adjustment of this class of junction is a classic eigenvalue problem. The

degenerate counterrotating eigenvalues are fixed by having recourse to Dicke’s
theorem. It states that these coincide with the position of a piston at one port,
which will decouple a second one from an input port. The nondegenerate eigen-
value is then obtained by making use of the equality between the trace of the
square matrix containing the eigenvalues along its main diagonal of the matrix
and that of the scattering one. The first of these conditions coincides with the
definition of the characteristic planes of the junction. The junction described in
this chapter uses a pair of turnstile resonators on each narrow wall of the wave-
guide. It may be visualized as a seven-port network consisting of an E-plane
junction of three rectangular waveguides and H-plane circular waveguides at
its axis with two orthogonal ports. The required three-port is obtained by clos-
ing the circular waveguides with a short-circuit piston. Figure 16.1 depicts the
E-plane arrangement under consideration.
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16.2 Scattering Matrix of Reciprocal E-plane
Three-port Y-junction

The scattering matrix of the three-port E-plane wye junction differs from its H-
plane counterpart in that it contains negative elements. Two negative terms are
present in the description of the E-plane tee junction. The scattering matrix at
the pass band characteristic plane of the E-plane wye junction may be written as

S =

S11 −S21 −S21

−S21 S11 −S21

−S21 −S21 S11

16 1

This matrix satisfies the unitary condition. It separately has symmetry about the
main diagonal in keeping with the reciprocity condition, as well as the phase
condition between ports 1 and 3 of the E-plane tee junction and similar phase
relations with the other two pairs of adjacent ports in a cyclic manner. The ori-
gin of the negative elements may be understood by scrutinizing the field pattern
of the junction across the narrow dimension of the waveguide with the gener-
ator setting at a side port of the junction. The mapping between the tee and wye
junctions is indicated in Figure 16.2.
The nature of the scattering matrix adopted in this work may be tested by

forming the unitary condition:

SST = I 16 2a

Back plate

Dielectric sleeve

Piston

Dielectric or
ferrite resonator

Figure 16.1 Schematic diagram of E-plane junction.
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One property of the matrix is that this junction cannot be satisfied with

S11 = 0 16 2b

Introducing this statement into the unitary condition scattering matrix gives

2S21 = 1 16 2c

S21 = 0 16 2d

The reference planes of the junction are not unique. Another possibility is to
place it at the stop band characteristic plane 90 away from that in
Eq. (16.1), that is,

S =

−S11 S21 S21

S21 −S11 S21

S21 S21 −S11

16 3

1

1

2
2

1 2

3

(a) (b)

(c)

3 3

Figure 16.2 (a–c) Electrical field pattern across the narrow dimension of an E-plane
waveguide wye junction with the generator sitting at port 3.
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The reference plane of the scattering matrix in Eq. (16.1) corresponds with that
of a piston that will produce a pass band between the other two ports. The plane
in Eq. (16.3) is that of a piston which will produce a stop band between the other
two ports, herewith referred to as a stop band characteristic plane. The possi-
bility of characterizing the junction at one plane and thereafter translating the
result by 90 to the other is understood. The converse operation is equally valid.
The scattering matrix of the H-plane junction is reproduced below for com-

pleteness sake. It is written as

S =

± S11 ± S21 ± S21

± S21 ± S11 ± S21

± S21 ± S21 ± S11

16 4

The positive sign is compatible with the scattering matrix in Eq. (16.1). The neg-
ative one is compatible with that in Eq. (16.3). The two planes differ in that the
first displays a shunt STUB-G complex gyrator circuit whereas the second pre-
sents a series STUB-R load. The former solution is that met in most commercial
circulators and is the one adopted here.
Equations (16.5) and (16.6) indicate the scattering matrices of the first stop

band circulation condition at the pass and stop band characteristic planes of
the junction.

S =

S11 0 0

0 S11 0

0 0 S11

16 5

S =

−S11 0 0

0 −S11 0

0 0 −S11

16 6

The above two matrices are compatible with Figure 16.3c and d in the next
section as well as Eq. (16.7) in the same section.

16.3 Reflection Eigenvalue Diagrams of Three-port
Junction Circulator

The adjustment of any m-port junction possible circulator is an eigenvalue
problem. The first and second circulation conditions of a three-port junction
circulator are depicted in Figure 16.3.
The left column in these illustrations corresponds to the first so-called circu-

lation condition of the circulator and the right column represents the second.
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The relationship between the eigenvalues of the junction and the scattering
parameter is given in the usual way by

S11 =
ρ1 + 2ρ2,3

3
16 7a

ρ1 ρ2,3 ρ1

ρ1, ρ2,3

ρ1, ρ2,3

ρ1

ρ1 ρ1

ρ1

ρ2

ρ2

ρ2

ρ2

ρ3

ρ3

ρ3

ρ3

e, 2m

e, 2e

m, 2e

m, 2m

e, 2e

120

120

120

120

ρ2,3

(a)

(b)

(c)

(d)

Figure 16.3 (a–d) Eigenvalue diagrams of the three-port symmetrical junction circulator (90
away from axis of junction).
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S21 =
ρ1−ρ2,3

3
16 7b

For a reciprocal junction

ρ2 = ρ3 = ρ2,3 16 7c

ρ1 in Eq. (16.7) is the nondegenerate eigenvalue and ρ2 and ρ3 are the degenerate
counterrotating eigenvalues. The first four first-circulation conditions illus-
trated in the left-hand side of Figure 16.3 are S11 = 1/3, −1/3, −1, and 1, respectively.
The second circulation condition is in each instance satisfied, provided S11 = 0.
This places the eigenvalues 120 apart on the eigenvalue diagram, as shown on
the right column of Figure 16.3.
The eigenvalue diagram applicable in any situation is dictated by both the

choice of reference planes and whether the junction is an E- orH-plane arrange-
ment. The stop band characteristic planes are displaced by 90 from each other.
The two eigenvalue diagrams in Figure 16.3a and b have pass band frequency
responses at the midband frequency of the junction. The two in Figure 16.3c
and d have stop bands there. Their diagrams are actually not unique. All four
eigenvalues may be reduced to a single stop band solution by introducing a thin
metal wire along the symmetry axis of the junction.

16.4 Eigen-networks

The eigen-networks of the three-port junction circulator, in its most simple
form, are one-port open- or short-circuit unit elements (UEs), which display
the reflection eigenvalues of the junction. The possible eigen-networks of the
problem region are separately indicated in Figure 16.4.
The in-phase eigenvector U1 and circularly polarized counterrotating ones

U2,3 are written as

U1 =
1

3

1

1

1

16 8a

U2 =
1

3

1

α

α2
16 8b

U3 =
1

3

1

α2

α

16 8c
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where

α= 1exp j120

ϕ1 and ϕ2,3 are reflection angles given by

ϕ1 = 2θ1 +
pπ
2
,rad 16 9a

ϕ2,3 = 2θ2,3 +
pπ
2
,rad 16 9b

p is equal to 1 for an open-circuited stub and 2 for a short-circuited one. θ1 and
θ2,3 are the electrical lengths of the eigen-networks, respectively.

ρ1 ρ1

ρ2

ρ3

ρ2

ρ3

Open
circuit

(a) (b)

(c) (d)

Short
circuit

Short
circuit

Open
circuit

Open
circuit

Open
circuit

ρ1
ρ1

ρ2

ρ3

ρ2

ρ3

Short
circuit

Open
circuit

Open
circuit

Short
circuit

Short
circuit

Short
circuit

Figure 16.4 Eigen-networks of the H-plane circulator (a, b), and that of the E-plane circulator
(c, d).
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The eigen-networks are revealed by application of the eigenvectors one at a
time. The reflection eigenvalues satisfy

ρiUi = SUi 16 10

The roots of the characteristic equation at the pass band characteristic plane of
the junction described in Eq. (16.1) are obtained from

S11−ρi −S21 −S21

−S21 S11−ρi −S21

−S21 −S21 S11−ρi

= 0 16 11

with i = 1,2,3. The eigenvalues at the pass band characteristic plane are

ρ1 = S11−2S21 16 12a

ρ2,3 = S11 + S21 16 12b

It is separately deduced in terms of Dicke’s formulation in Section 16.6.
The reflection eigenvalues at the stop band characteristic plane of the scatter-

ing matrix in Eq. (16.3) are displaced from that of Eq. (16.1) by π radians, as writ-
ten as

ρ1 = −S11 + 2S21 16 13a

ρ2,3 = −S11−S21 16 13b

The nature of the H-plane eigen-networks may be established in terms of the
electric fields of the waveguide, that of the E-plane in terms of its magnetic
fields.
The two reciprocal arrangements also differ in the insertion phase angles at

the characteristic planes, when injecting from one port and measuring at the
other two. These are spaced 360 apart in the case of the H-plane geometry
and 180 apart in that of the E-plane one.

16.5 Pass Band and Stop Band Characteristic Planes

Two classic planes separated by 90 are met in the description of wye junctions.
One plane is that of a piston at one port which will produce a pass band between
the other two. The second is that of a similar piston at the same port, which will
produce a stop band. The latter planes are henceforth denoted as the stop band
characteristic planes of the junction and the pass band characteristic one. Each
arrangement displays the degenerate reflection eigenvalues of the junction at
the respective planes of the piston.
The calculation of the first circulation condition of any junction circulator

may in principle be undertaken at one or the other of its classic planes. The
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difference between the two is that the complex gyrator circuit at the first char-
acteristic plane is that of a series STUB-R complex gyrator circuit at its term-
inals, whereas the second establishes a shunt STUB-G one. The complex gyrator
circuit encountered in the design of junction circulators is usually the former
circuit. Its reference plane is, therefore, adopted in this paper.
An important property of a piston at a characteristic plane is that it establishes

similar planes at the other ports of the junction. The reflection coefficient at the
stop band characteristic plane is given by

ρin = −1 16 14

The reflection coefficient at the pass band characteristic plane, 90 away from
the first one, is

ρin = 1 16 15

The degenerate reflection eigenvalues are obtained by decoupling one output
port from a second one using a variable short-circuit at the third one.

16.6 The Dicke Eigenvalue Solution

The eigenvalues of the symmetrical reciprocal E-plane wye junction may be
obtained by forming the roots of the characteristic equation. These may also
be deduced by recognizing that the degenerate eigenvalues of the junction coin-
cide with the reflection coefficients at a typical input port with one output port
decoupled from it by a piston at the other output port, as proposed by Dicke.
The third eigenvalue may then be deduced by having recourse to the trace of
the diagonal eigenvalue matrix and that of the scattering matrix.
The development of the degenerate eigenvalues at the stop band character-

istic plane is dealt with here by way of an example. It starts by forcing the rela-
tionship between the incident and reflected waves of the junction, given by

b1

b2

b3

=

−S11 S21 S21

S21 −S11 S21

S21 S21 −S11

a1

a2

a3

16 16

where

b1 = −S11a1 + S21a2 16 17a

b2 = S21a1−S11a2 16 17b

0 = S21a1 + S21a2 16 17c
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with

a3 = b3 = 0 16 18a

a2 = −b2 16 18b

The reflection coefficient at port 1 is now given without ado by

ρin
b1
a1

= −S11−S21 16 19

and

ρ2,3 = ρin 16 20

The third eigenvalue is deduced by making use of the equality between the trace
of the square diagonal matrix containing the eigenvalues of the problem and
that of the square scattering matrix, that is,

ρ1 + 2ρ2,3 = −3S11 16 21

or

ρ1 = −S11 + 2S21 16 22

This result is identical to that derived by having recourse to the eigenvalue
problem.
The equality between the reflection coefficient at the pass band characteristic

plane and the degenerate eigenvalues at the same plane is readily understood.
This may be demonstrated without ado by recognizing that the pass and stop
bands’ characteristic planes are interlaced and separated by 90 . The result is
in keeping with the scattering matrix in Eq. (16.1). The reflection coefficient
is here +1 instead of −1.

16.7 Stop Band Characteristic Plane

One means of testing the description of the scattering matrix adopted here is to
see whether it satisfies the boundary conditions at the characteristic planes
established previously.
A typical calculation of the scattering parameters at the characteristic planes

produced in an unloaded E-plane wye junction (Figure 16.5) in WR75 at a fre-
quency of 13.25 GHz gives

S11 = 0 3476∠−190 75

S21 = 0 6630∠−173 25
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The electrical length θmeasured from the opening of the rectangular waveguide
to the characteristic plane is

θ =
2π
λg

l = 1 75rad = 100 5 16 23

Introducing these parameters in the definition of ρin gives

ρin = −S11−S21 = 0 9999∠−179 24 16 24

as asserted.

16.8 The E-plane Geometry

The E-plane junction consists of one or two quarter-wave long gyromagnetic
prism or cylindrical resonators on one or both narrow waveguide walls at the
junction of the three rectangular waveguides. Figures 16.6 and 16.7 illustrate
two possibilities. Another resonator structure is a truncated cylindrical geom-
etry. The geometry dealt with here is that of a junction containing a pair of cylin-
drical resonators. The reference terminals of the junction are the openings of
the regular waveguides. The junction, in the case of the geometry using disk
resonators, is defined in terms of its physical parameters by the radius of
the resonator R, by its length L, by the gap S between the open face of a typical
resonator and the symmetrical plane of the waveguide. The junction is com-
pletely fixed by the aspect ratio R/L of the resonator, by the radial wave number

Characteristic planes

θ

Figure 16.5 Schematic diagram of E-plane wye junction showing the positions of the
characteristic planes.
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k0R, and by the gap–resonator ratio S/L. The wavenumber k0 completes its
description.
A property of the junction under consideration is that it has two different

neighboring solutions. One, a so-called small gap, has a pass band about its mid-
band frequency. The other, a so-called large-gap solution, has a stop band. The
prevailing solution depends upon whether the nondegenerate eigenvector has
an electric or magnetic wall at the terminals of the junction. A feature of the
small gap solution is that its in-phase eigen-network may be tuned to display

(a) (b)

Figure 16.6 Schematic diagram of E-plane prism circulator using (a) coupled quarter-wave
long resonators and (b) single quarter-wave long resonator.

2s

(a) (b)

2r

La

b

2rl

Figure 16.7 Schematic diagram of E-plane cylindrical circulator using (a) coupled quarter-
wave long resonators and (b) single quarter-wave long resonator.
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a short-circuit boundary condition, which would otherwise be an open-
circuited one, at its input terminals. This property of an evanescent UE is
demonstrated in the next section. The degenerate eigen-networks support
quasi-HE11 field patterns, which propagate up and down the length of the res-
onator. It may be adjusted to exhibit an open-circuit at the same terminals. The
overall arrangement is, therefore, compatible with the eigenvalue diagram in
Figure 16.3a and is the problem dealt with in this paper.

16.9 First Circulation Condition

The adjustment of the first circulation condition of the eigenvalue diagrams in
Figure 16.3a demands that the eigen-networks are commensurate and that the
reflection coefficients are either in-phase or out-of-phase at the terminals of the
junction,

ρ1 = −1 or + 1,k0,
R
L
= constant 16 25a

ρ2,3 = + 1 or −1,k0,
R
L
= constant 16 25b

The demagnetized junction displays a pass band whenever

ρ1 = −1 16 26a

ρ2,3 = + 1 16 26b

It displays stop band conditions at the same possible pairs of terminals whenever

ρ1 = + 1 16 27a

ρ2,3 = + 1 16 27b

A typical demagnetised three-port E plane junction may either display a pass or
stop band. Tables 16.1 and 16.2 indicate, in keeping with Dicke’s theorem, that

Table 16.1 ϕ1 = 2θ1 + π, s/c.

θ1 ϕ1 ρ1

π
2

2π +1

π 3π −1

3π
2

4π +1

2π 5π −1
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for a specified even mode stepping the odd one by 90 exchanges a typical pass
or stop band into a stop and pass band.
The required solution is

k0R1 = k0R2,3 = k0R 16 28a

S1
L
=
S2,3
L

=
Seff
L

16 28b

The boundary condition may also be expressed in terms of the gap factor. The
latter notation is the one adopted in this paper.

q1 = q2,3 = qeff 16 29

These are written as

q1 =
L

L+ S1
16 30a

q2,3 =
L

L+ S2,3
16 30b

qeff =
L

L+ Seff
16 30c

k0 is the radian wavenumber (rad m−1), written as

k0 =
2π
λ0

, radm−1

and λ0 (m) is the free-space wavelength. The work undertaken here is at 13.25
GHz in WR75 waveguide for which k0 = 0.278 rad mm−1.

Table 16.2 ϕ2,3 = 2θ2,3, o/c.

θ2,3 ϕ2,3 ρ2,3

π
2

π −1

π 2π +1

3π
2

3π −1

2π 4π +1
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16.10 Calculations of Eigenvalues

The required eigenvalue diagram of the small gap solution is dealt with here.
The eigenvalues are given in Eq. (16.12). The intersection between the two con-
ditions, q1(k0R) and q2,3(k0R), is the required solution.
The adjustments of ϕ1 and ϕ2,3 are the objects of the optimization.Writing ϕ1

and ϕ2,3 in terms of the scattering parameters gives

ρ1 = 1exp− jϕ1 = S11−2S21 16 31a

ρ2,3 = 1exp− jϕ2,3 = S11 + S21 16 31b

In general,

ρ1 = 1exp− jϕ1 16 32a

ρ2,3 = 1exp− jϕ2,3 16 32b

The required angles of the reflection eigenvalues are here equal to

ϕ1 = π, rad

The in-phase eigenvalue of the junctions may be deduced by having recourse to
the appropriate linear combination of the scattering matrix of the junction. The
approach utilized here, however, is to construct its one-port eigen-network.
This network is obtained by partitioning the junction into equal regions using
a triplet of electric walls. The circuit obtained thus is depicted in Figure 16.8.

b

a

2S

R

L

(a)
(b)

Figure 16.8 Schematic diagram of (a) the in-phase eigen-network and (b) the
counterrotating eigen-network.
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The calibration plane in the design of the junction circulator is not unique.
Distinct boundary conditions produce equally valid solutions but with different
combinations of radian wave numbers and gap–resonator ratios.
Figure 16.9 is a Smith chart of a typical plot.
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Adjustment of Prism Turnstile Resonators Latched
by Wire Loops
Joseph Helszajn1 and William D’Orazio2

1 Heriot Watt University, Edinburgh, UK
2 Apollo Microwaves Ltd, Dorval, Quebec, Canada

17.1 Introduction

An important microwave component is a switched circulator using a single wire
loop embedded in a gyromagnetic resonator. The operation of the switch relies
on the two remnant states of the hysteresis loop of a magnetic insulator. This is
done using suitable current pulses. The resonator in Goodman (1965) is a half-
wave long tri-toroidal geometry with open flat faces and that in Passaro and
McManus (1966) and Katoh et al. (1980) is a half-long prism configuration.
The operation of each arrangement has been interpreted in terms of a tri-
toroidal geometry consisting of an inner core magnetized in one sense and a
triplet of ribs magnetized in the other. The purpose of this chapter is to inves-
tigate the operation of a prism resonator using a single irregular hexagonal wire
loop in terms of the ratio of the inner and one typical rib of the outer tri-toroidal
geometry. The results obtained here are expressed in terms of a shape factor
defined by the ratio of the inner core of the tri-toroidal resonator and one typical
outer rib. This quantity is bracketed between 1 and typically 10. A shape factor
of infinity corresponds to a homogeneous resonator.
Figure 17.1 depicts the schematic diagram of the arrangement considered

here. It may be visualized as an inverted reentrant junction together with a dou-
blet of quarter-wave long resonators with the flat face of one typical resonator
closed by a virtual electric wall and the other separated from the in-phase piston
by a suitable gap. This type of junction, however, is usually described in terms of
a half-wave long geometry on its axis and this convention is retained here.
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The axial direct magnetization produced by a wire carrying current has equal
magnitudes but opposite polarities on either side of the wire loop and decays
away from it in a classic, predictable manner. The distribution of the alternating
radio frequency magnetic field also varies on either side of the wire, but with
unequal intensities. Unless a full three-dimensional solver is available, the
experimental procedure introduced here is a practical solution to the adjust-
ment of the switch resonator under consideration.
A knowledge of the quality factor of the resonator together with its suscep-

tance slope parameter is sufficient to define the complex gyrator circuit of
the circulator. The dependent parameter is here the gyrator conductance.
The quality factor of the complex gyrator is a property of the gyrotropy of
the resonator and is established in this chapter. The susceptance slope param-
eter is a property of the geometry of the resonator.

17.2 The Prism Resonator

The prism resonator under consideration consists of a half-wave long gyromag-
netic waveguide with open flat faces separated by dielectric spacers from top
and bottom triangular platforms. The tri-toroidal prism resonator in
Figure 17.2 is defined by its wave number k0, the overall length of the half-wave
long prism resonator (2L0), the side dimension of the prism (A), its aspect ratio
A/L0, the side of the subsidiary triangle (L), and its gap factor qeff. The latter
quantity is set by half the length of the resonator (L0) and that of a typical die-
lectric spacer (S).

Waveguide
Ferrite resonator
Dielectric

Metal insert

Switching wire

Figure 17.1 Schematic diagram of a junction circulator using a latched prism resonator.
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The relative dielectric constants of the two regions εd and εf complete its char-
acterization. The relative dielectric constant of the spacers used here is εd = 2.1.
The thickness and dielectric constant of the spacers are not independent vari-

ables but are both fixed by the in-phase eigen-network of the junction. The
degenerate counterrotating eigen-networks are essentially set by the linear
dimensions of the prism and its dielectric constant. It approximately determines
the midband frequency of the demagnetized junction. The exact solution is an
eigenvalue problem as outlined in chapter 15.
The physical geometry under consideration is summarized below.

k0L= 0 445

A
L
= 4 448

S
L
= 0 338

εd = 2 1

εf = 15

k0 = 0 0792 rad mm 1

The gyrotropy is

κ =
γM0

ω0
= 0 68 17 1

The waveguide size is WR229 and the saturation magnetization μ0M0 of the
inner region of the magnetic insulator is 0.1200 T.

Region 1

Region 2

Region 3

Figure 17.2 Geometry of tri-toroidal prism resonator.

Adjustment of Prism Turnstile Resonators Latched by Wire Loops 259



17.3 Split Frequency of Cavity Resonator with Up or
Down Magnetization

The most important quantity entering into the description of either a fixed field
or latched junction circulator is the quality factor (QL) of its complex gyrator
circuit. This quantity is solely determined by the difference between the opening
of the counterrotating frequencies of the resonator. The quality factor of the
closed gyromagnetic resonator is

1
QL

= 3
ω+ −ω−

ω0
17 2

and

π
2L0

2

=
ω±

c

2
εf μ±C1,1κ −

4π
3A

2

17 3

μ and κ are the relative diagonal and off-diagonal elements of the tensor perme-
ability. The gyromagnetic constant is (Akaiwa 1974)

C1,1 =
3
π

17 4

The factor C1,1 accounts for the fact that the counterrotating magnetic fields in
the gyromagnetic waveguide are only circularly polarized on its axis. This quan-
tity also enters into the description of the split cutoff numbers or frequencies of
the related planar resonator with top and bottom electric walls and a magnetic
sidewall. 4π/3A is the cutoff number of the dominant TM1,0 mode in the trian-
gular waveguide.
In a saturated material, μ and κ are given by (Green and Sandy 1974)

μ= 1 17 5a

κ =
ωm

ω
17 5b

where

ωm = γMr 17 6

Mr is the remnantmagnetization of the garnet resonator (Am−1), γ is the gyromag-
netic ratio (2.21 × 105 rad s−1 per Am−1), and ω is the radian frequency (rad s−1).
Figure 17.3 indicates some results for two different materials at 4 GHz. The

magnetic flux density in this illustration is that at one of the two flat faces of
the prism.
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One of the two materials employed in Figure 17.3 is a garnet one with a mag-
netization (μ0M0) of 0.0800 T, a squareness (Mr/M0) equal to 0.80, a relative die-
lectric constant (εf) of 15.3, and μ0 is the free space permeability (4π × 10−7 H
m−1). The side dimension of the resonator (A) is 25.0 mm and its overall length
(2L0) is 11.24 mm.
The relative dielectric constant of the region between the open faces of the

resonator and the waveguide or image walls is 2.1; its thickness (S) is 1.9
mm. The gap factor qeff is 0.75. Its quality factor, QL, at the knee of the lower
branch of the two split frequencies is equal to 2.08. The other material utilized
in obtaining the data in Figure 17.3 has a magnetization (μ0M0) of 0.1200 T, a
squareness of 0.78, and a relative dielectric constant of 15.1. Its quality factorQL

is equal to 1.62.

17.4 Quality Factor of Gyromagnetic Resonator with
Up and Down Magnetization

The physical variables of the in-phase eigen-network do not explicitly appear in
the description of the complex gyrator circuit, provided it is separately idealized.
The development of a circulator or switch using an internally latched resonator
differs only from that of a conventional one in that the degree of splitting that is
realizable between the degenerate counterrotating modes is in this situation
somewhat less than is otherwise the case. This situation may be expressed in
terms of a splitting factor (kf) by writing the former relationship as (Helszajn
and Sharp 2012)
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Figure 17.3 Experimental split
frequencies of prism resonators
(μ0M0 = 0.0800 T and 0.1200 T).
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1
Qeff

= 3kf
ω+ −ω−

ω0
17 7

where

kf =
ω+ − ω−

ω+ −ω−
17 8

and ω+ and ω− are the split frequencies of the resonator with its inner region
magnetized along the positive z direction and its outer one in the opposite direc-
tion. The factor kf may therefore be experimentally determined by evaluating
the preceding relationship for the homogeneous and inhomogeneous circuits,
respectively.
A scrutiny of the network problem indicates that values for Qeff between ½

and 2½ are optimum for the design of quarter-wave coupled devices. An exper-
imental or theoretical knowledge of this latter quantity is therefore essential for
design and its evaluation is the main endeavor of this chapter.
Figure 17.2 indicates a typical discretization.

17.5 Shape Factor of Tri-toroidal Resonator

The ratio of the two oppositely magnetized regions is defined by a shape fac-
tor q:

q =
Surface area of the inner region magnetized along the + zdirection

Surface area of one typical outer region magnetized along the−zdirection

17 9

If the side dimension of the overall triangular resonator is taken as A and those
of the outer regions as L, then

q =
A2−3L2

L2
17 10

The condition q = 1 corresponds to that for which the cross-sectional areas of
the two regions are equal.
Six specific geometries are investigated in this chapter. These are defined by

L0 = 5.62 mm, A = 25mm, L = 8.33 mm, L = 9.13 mm, L = 10.2 mm, L = 10.4
mm, L = 11.4 mm, and L = 12.5 mm. The corresponding ratios of the magne-
tized surface areas are q = 6.01, q = 4.50, q = 3.01, q = 2.78, q = 1.81, and
q = 1.00. The wire used is a 24 SWG solid copper wire. Table 17.1 summarizes
the data. The general relationship obtained experimentally here between q and
kf is depicted in Figure 17.4.
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The condition q = 1.0 is that for which the flux density in the core is three
times that in a typical rib. The maximum splitting factor in this instance is given
by kf = 0.4. It is compatible with a quality factorQeff = 4.6. kf in Figure 17.4 repre-
sents the split frequencies in the resonator at saturation produced by a current-
carrying wire divided by that produced by a uniform magnetic field.
Figure 17.5 is a photograph of the experimental hardware.

Table 17.1 Shape factor q of the six
geometries investigated in this work.

A (mm) L (mm) q

25 8.33 6.01

25 9.13 4.50

25 10.2 3.01

25 10.4 2.78

25 11.4 1.81

25 12.5 1.00
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Figure 17.4 Experimental connection between q and kf in prism resonator with up and down
magnetization.
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17.6 Squareness Ratio

Another quantity that enters into the description of latched devices is the
squareness of the hysteresis loop of the magnetic insulator. It is defined here by

R=
Splitting with field removed
Splitting with field applied

17 11

Figure 17.6 indicates some data on the split frequencies of one device using a
current-carrying single wire loop with q = 1.0 and μ0Mr = 0.1200 T with and
without the remanence field. The value R obtained here is of the order of 0.8.

Figure 17.5 Photograph of switch resonator.
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Figure 17.6 Experimental split
frequencies of wire-operated
half-wave long prism resonator
with up and down magnetization
(μ0Ms = 0.1200 T).
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17.7 The Complex Gyrator Circuit of the Three-port
Junction Circulator

The gyrator circuit of any junction circulator for which the in-phase eigen-
network may be idealized by a frequency-independent short-circuit boundary
condition and for which the counterrotating ones are weakly split by the gyro-
tropy of the resonator is the one-port STUB-R circuit shown in Figure 17.7
(Helszajn 1994). A knowledge of its element values is a prerequisite for design.
This circuit is usually described in terms of its susceptance slope parameter (b ),
gyrator conductance (g), and the normalized split frequencies of the degenerate
counterrotating eigenvalues [(ω+ −ω−)/ω0]. The gyrator conductance is set by
the split frequencies of the resonator once the susceptance slope parameter is
fixed by the choice of the resonator shape (Helszajn 1994).
Its normalized conductance is here

geff = 3b kf
ω+ −ω−

ω0
17 12

b is the normalized susceptance slope parameter of the STUB. The other quan-
tities have the usual meaning.
A first-order approximation to the gyrator conductance may be obtained by

assuming that the susceptance slope parameter of the junction is a property of
the resonator and not of the gyrotropy. A typical value obtained on a similar
prism resonator is

b = 7

The gyrator conductance geff may also be written in terms of QL of the homo-
geneous resonator and the splitting factor kf previously defined as

geff =
b
QL

kf

1

ystub

(μeff, εeff)

Yin= g + jb

g

Figure 17.7 One-port complex gyrator circuit of junction
circulator.
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Introducing this value of b in the real part condition with q = 3 gives

geff = 1 52

Figure 17.8 illustrates the relationship between the gyrator conductance
obtained here and the shape factor.
Figure 17.9 shows Qeff versus q.

17.8 The Alternate Line Transformer

A suitable matching network is here an alternate line transformer. The topology
of thematching arrangement under consideration is indicated in Figure 17.10. It
consists of one short unit element (UE) adjacent to the load with the admittance
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of the generator in cascade with a second UE with the admittance of the load.
The implementation of this arrangement is outside this work.

17.9 Effective Complex Gyrator Circuit

A circulator switch may be characterized in terms of the flux density produced
by an electro magnet, the current through a magnetizing loop giving up and
down magnetization in the vicinity of the loop, or in terms of the current
through the wire loop at the remnant magnetization. The effect of each arrange-
mentmay be readily compared by plotting in each instance the gyrator conduct-
ance versus the split frequencies of the resonator. The slope of such a typical
curve is the susceptance slope parameter of the junction, so that the three
descriptions may be superimposed on a single graph for comparison purposes.
A typical graph separately defines the real part condition of the complex gyrator
circuit.
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Numerical Adjustment of Waveguide Ferrite Switches
Using Tri-toroidal Resonators
Joseph Helszajn1 and Mark McKay2

1 Heriot Watt University, Edinburgh, UK
2 Honeywell, Edinburgh, UK

18.1 Introduction

The direction of circulation in a circulator is determined by the polarity of the
direct magnetic field intensity utilized to magnetize its gyromagnetic resonator.
It may therefore be employed to switch an input signal at one port to either one
of the other two. One practical means of doing so is to internally or externally
latch the resonator by using a current-carrying wire loop to switch between the
two remanent states of its hysteresis loop. Figure 18.1 depicts two possible half-
wave long latched gyromagnetic resonators met in the design of waveguide
switches. The geometries under consideration here are strictly speaking exam-
ples of inverted reentrant turnstile structures using doublets of quarter-wave
long resonators separated by virtual electric walls.
The waveguide circulator dealt with here is often but not exclusively referred

to as the turnstile arrangement. Its adjustment involves a two-step procedure.
The first fixes the degeneracy between a pair of degenerate counterrotating
modes and a quasi in-phase mode. The second replaces the dielectric resonator
by a gyromagnetic one in order to remove the degeneracy between the counter-
rotating modes. The resonator, in the case of a cylindrical cavity, comprises a
doublet of quarter-wave long HE1,1,δ resonators separated by a virtual electric
wall. The in-phase mode is a two-layer quasi-planar structure supporting a
TM010 mode with no propagation along the axis of the resonator.

269

Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches,
First Edition. Joseph Helszajn.
© 2019 Wiley-IEEE Press. Published 2019 by John Wiley & Sons, Inc.



18.2 The Tri-toroidal Resonator

The internal direct magnetization of the tri-toroidal gyromagnetic resonator is
established by either winding a single switching wire around the core of the tri-
toroid or by wrapping individual wires around its vertical back members. The
chapter includes calculations on the flux on either side of the current-carrying
wire loop. It also includes calculations on the splitting between the degenerate
counterrotating modes of the tri-toroidal cavity. Figure 18.2 shows schematic
diagrams of wire-activated gyromagnetic prism cavities in a waveguide junction
in more detail.
An important property of the tri-toroidal geometry is that the direct magnetic

flux in a typical back vertical branch of the arrangement is one third that of the
central core. The aforementioned feature is readily understood by having
recourse to the symmetries of the geometries. Figure 18.3 indicates two possible
wire arrangements.
An approximate model divides the volumes of the geometry into one gyro-

magnetic region with a magnetic flux density in one direction, a middle iso-
tropic dielectric region, and one gyromagnetic region with a uniform
magnetic flux density in the opposite direction, but, in general, with a smaller
or negligible value from that of the inner core. Here, the outer region only serves
to complete the magnetic return path of the core of the tri-toroidal circuit. The
way to explore the distribution of the direct magnetic flux density within the tri-
toroidal circuit is to have recourse to a Finite Element (FE) magnetostatic
package.

Switching wire
Switching wire

Figure 18.1 Topologies of two half-wave long gyromagnetic resonators.
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Figure 18.3 Practical configurations met in the design of latched prism cavities.

Waveguide

Switching wire

(a) (b)

(c)

Ferrite resonator
Dielectric
Metal insert

Figure 18.2 (a–c) Schematic diagrams of waveguide circulators showing different switching
wire configurations.
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18.3 The Wire Carrying Slot Geometry

The size and shape of the wire carrying slots are, in practice, fixed by the cor-
responding direct magnetic flux density in the magnetic insulator. A difficulty
with the introduction of a triplet of oversized slots into the resonator geometry,
in the calculation of its degenerate cutoff frequencies, is that the latter varies
with geometry. The way to overcome this shortcoming, introduced here, is
to pot the slot containing the current-carrying wire with dielectric filler with
the relative dielectric constant of the ferrite material. The introduction of this
filler ensures that the dielectric constant of each region is the same and allows
the shaping of the magnetic flux density to proceed without having to reset the
frequency with each and every iteration of the geometry.
The geometry of the wire carrying slots in a prism cavity met in connection

with triangular and irregular cores are depicted in Figure 18.4. A typical slot

Irregular
hexagonal
core

H-wall

Hdc

Return
path

Dielectric
filler

Wire

Ferrite

A
Region 1

Region 1

Region 2

Region 2

Region 3

Region 3

Figure 18.4 Tri-toroidal gyromagnetic cavity.
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configuration is, in practice, set by the need to shape the direct magnetic flux
densities in the inner and outer cores.
One approximate model adopted for the microwave circuit retains the ver-

tical element in a typical tri-toroidal circuit but disregards the magnetization
of the two parallel ones in the slot region. This approximation allows the
regions containing the wire carrying slots to be essentially represented by die-
lectric ones with the dielectric constant of the ferrite material. The cross-
section for the purpose of the calculation of the split cutoff space consists
of an inner region with one value of magnetization, an intermediate dielectric
region, and one outer region with a magnetization of one-third that of the
inner one. One way to explore the internal direct magnetization of the mag-
netic insulator in the presence of one or more loops is to have recourse to a
magnetostatic solver.

18.4 The Magnetostatic Problem

The main problem under consideration is that of an equilateral triangle
divided into two regions by an irregular hexagonal wire. The surfaces of
the inner and a typical outer region are Ain and Aout, respectively. The sym-
metry of the tri-toroidal problem indicates that the direct magnetic flux ϕout

in each of the outer ribs of the tri-toroidal geometries is one-third that of the
core ϕin. The flux density, however, in a typical outer region may be more or
less than that of the inner one. The governing equation for the magnetic flux
ϕout in a tri-toroidal typical return path due to a flux ϕin in the core of the
toroid is

ϕout =
1
3
ϕin 18 1

The magnetic flux densities Bin and Bout in the two regions are related by

BoutAout =
1
3
BinAin 18 2

The magnetic flux densities in a typical outer path is

Bout =
1
3
qBin 18 3
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where q is the shape factor:

q =
Ain

Aout
18 4

The ratio of the gyrotropies in the two regions is here assumed to be equal to
that of the flux densities. The relationship between the two can be described in
terms of the shape factor, q, by

κ

μ outer

= −
q
3

κ

μ inner

18 5a

where

κ =
γM0

ω0
18 5b

μ= 1 18 5c

γ = 2.21 × 105 (rad s−1 per Am−1) is the gyromagnetic ratio, M0 is the magnet-
ization (Am−1), and ω0 is the radian frequency (rad s−1).

18.5 Quality Factor of Junction Circulators
with Up and Down Magnetization

The removal of the degeneracy between the counterrotating modes of the resona-
tor, themain endeavor of this work, is dependent not only on the gyrotropies in the
tworegionsbut alsoon thedistributionof the alternatingmagnetic fieldwithineach
region. The alternating magnetic field is, of course, more intense on the axis of the
resonator than on its periphery and correctly forms part of the FE calculation.
The development of a circulator or switch using an internally latched resona-

tor differs only from that of a conventional one in that the degree of splitting
that is realizable between the degenerate counterrotating modes of the resona-
tor is in this situation degraded by the up and downmagnetization on either side
of the wire. This feature may be accounted for by replacing the gyrotropy con-
stantC11 in the definition of the split phase constants of the gyromagnetic wave-
guide by an effective constant C11.
The perturbed gyrotropy constant may be deduced by introducing a filling

factor (kf) in the classic relationship between the quality factor Qeff of the com-
plex gyrator circuit in this type of device and ω±, the split frequencies of the
homogeneous resonator:

1
Qeff

= 3kf
ω+ −ω−

ω0
18 6

274 Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches



where

kf =
ω+ − ω−

ω+ −ω−
18 7

ω+ and ω− are the split frequencies of the resonator with its inner region mag-
netized along the positive z direction and its outer one in the opposite direction.
The filling factor kf may therefore be deduced by evaluating the ratio of the split
frequencies of the homogeneous and inhomogeneous circuits, respectively.

18.6 Split Frequencies of Planar and Cavity
Gyromagnetic Resonators

The split cutoff frequencies of the planar gyromagnetic resonator are

ω±

c
=

4π
3A εf

1
C11κ

2
18 8

provided

1
1−x

= 1+ x 18 9a

1 + x= 1+
x
2

18 9b

The split propagation constants of the half-wave long gyromagnetic cavity res-
onator are given by

β ± =
π
2L

18 10

Application of this condition gives the split frequencies of the cavity resonator.

ω±

c
=

π 2L 2 + 4π 3A 2 1 C11κ 2
εf

18 11

An important quantity that enters in the development of both planar and cavity
resonators to be dealt with in the next section is the difference between the split
frequencies. An inspection of the above two results indicates that

ω+ −ω−

ω0
=
ω+ − ω−

ω0
=C11κ 18 12

This result suggests that the quality factor of a cavity resonator may be deduced
from a calculation of the split cutoff frequencies of the cavity.
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18.7 The Split Frequencies of Prism Resonator
with Up and Down Magnetization

A typical three-dimensional calculation on the split frequencies of a prism res-
onator in WR229 waveguide, with the inner core magnetized in one sense and
the outer region in the other, is given in Figure 18.5. This is done for various
values of the shape factor of the cavity.
The physical geometry under consideration is summarized below.

k0L = 0 445

A L= 4 448

S L= 0 338

k0 = 0 0792 rad mm−1

The corresponding result in the case of a homogeneously magnetized resonator
is superimposed in Figure 18.5 for the purpose of comparison. The
magnetization employed to obtain this result is μ0M0 = 0.1200 T. The relative
dielectric constants of the ferrite material and that of the gap are 15.1 and 2.1
respectively. The illustration here assumes that the fluxes on either side of the
current-carrying wire loop are uniform but that the flux in a typical outside
region is one-third that of the inner region.
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Figure 18.5 Split frequencies of up and down magnetized tri-toroidal prism resonator for
parametric values of shape factor (q = 1, 3, 6 and ∞).
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18.8 Exact Calculation of Split Frequencies in
Tri-toroidal Cavity

The task of this section is to develop the exact relationship between the split fre-
quencies and the shape factor of a typical tri-toroidal cavity. This may be done by
having recourse to three-dimensional magnetostatic and high frequency FE sol-
vers. Figure 18.6 depicts the wire configurations of two typical shape factors.
A typical FE discretization is indicated in Figure 18.7.

Figure 18.6 Uniform up and down magnetizations in a planar resonator with top and
bottom electric walls, and a magnetic sidewall, for q = 1 and q = 6.

Figure 18.7 Discretization of prism resonator.
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The magnetostatic problem in the case of the prism geometry with an irreg-
ular switching wire is indicated in Figure 18.8 for q = 1, 3, and 6. The squareness
ratio (R) of the magnetic insulator is 0.80. The wire used is 24 SWG and the
current in the wire is 7 A.
The magnetic flux density B and the magnetic field intensity H in a

typical region are related by the details of the hysteresis loop of the material
in question.

B= μ0H +M 18 13a

and

κ =
γM
μ0ω

18 13b

The split frequencies obtained in this way are indicated in Figure 18.9.

18.9 Calculation and Experiment

The three-dimensional FE calculation of the splitting factor (kf) of the tri-toroidal
cavity, on the assumption of up and down uniform magnetized regions on either
side of the current-carryingwire loop, is summarized in Figure 18.10 for a number
of different shape factors. The exact description of the arrangement considered
here is also illustrated in the same diagram. The two results are separately com-
pared with some experimental data in the same figure. The up and down mag-
netized model of the latched resonator adopted here is, in practice, inadequate.

(a) (b)

(c)

Figure 18.8 Magnetic flux density in prism resonator latched bywire loops: (a) q = 1, (b) q = 3,
and (c) q = 6.
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18.10 Tri-toroidal Composite Prism Resonator

The design of a composite resonator using two different ferrite materials is dis-
cussed in this section. The arrangement under consideration consists of an
outer region with a lower magnetization than the inner core and the exact
characterization requires again a three-dimensional FE package with both
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Figure 18.9 Exact split
frequencies versus q in
latched prism resonator.
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Figure 18.10 kf versus q in
latched prism resonator
(simulation: ▲ up/down
magnetization, ● exact; ■
experiment).
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magnetostatic and high frequency solvers. A comparison of Qeff for two differ-
ent ratios of magnetization is given in Figure 18.11. A first-order approximation
to the split frequencies of a gyromagnetic cavity with up and down magnetiza-
tionmay be deduced by combining a planar description of the flux on either side
of a current wire loop with a high frequency FE discretization of the geometry.

18.11 Tri-toroidal Wye Resonator with Up and Down
Magnetization

The cutoff space and the split frequencies of the tri-toroidal half-wave long wye
cavity structure composed of a cylindrical region and a triplet of gyromagnetic
ribs incorporating a switching wire is discussed in the section. This geometry
depicted in Figure 18.12, unlike the prism arrangement, has no closed form
solution. Its split cutoff space is described, in addition to the location of the wire,
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Figure 18.11 Qeff versus q in latched composite prism resonator (M2 = 0).
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by its coupling angle, ψ , and its interior radial wavenumber, k0r. The radial
wavenumber k0R, or the electrical length, θ, of the ribs or the ratio of the internal
and external radii, r/R, is the unknown of the problem. The wire geometry in a
typical resonator is shown in Figure 18.13. The attraction of this arrangement is
that it permits the switching wire to be located closer to the axis of the resonator
compared to what is possible with either a cylindrical or prism configuration.
One specific family of solutions is obtained by placing the wires at the ports

Resonator

Switching wire

Figure 18.12 Tri-toroidal wye resonator.

Region 1

Region 2

Region 3

Figure 18.13 First wire configuration.
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of the circular gyromagnetic region and adjusting the coupling angle at the same
boundary for each and every value of k0r.
A separate calculation in Chapter 12 indicates that the opening between the

split cutoff frequencies of this sort of circuit deteriorates rapidly for r/R below
about 0.50. The up and down problem is therefore restricted to the interval
0.50 ≤ r/R ≤ 1.0. The physical parameters of the degenerate cutoff space are
obtained by having recourse to the data in Chapter 12. One solution at 4.0
GHz is

k0 = 0 0838radmm−1

k0 εfr = 1 2rad

ψ = 0 35rad

The unknown of the problem is k0R, given in Chapter 12. The result is

k0 εfR= 2 0

The electrical length of the unit element (UE) is then given by

θ = k0 εf R−r 18 14

There is no closed-form expression for the general cutoff number; each geom-
etry must be dealt with separately. The length 2Lmust also be obtained numer-
ically. The split cutoff frequencies of the arrangements with ψ = 0.20 and 0.40
are available in Chapter 12.
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19

The Waveguide H-plane Tee Junction Circulator Using a
Composite Gyromagnetic Resonator
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

19.1 Introduction

The waveguide tee junction rather than the wye geometry is perhaps the opti-
mum arrangement in the construction of compact waveguide circulators and
switches. The geometry is here either a composite turnstile or a post geometry.
The advantage of the post resonator is that its aspect ratio may be used together
with a switching wire to adjust the profile of the direct magnetization. It may
also be used to both internally and externally latch a switch. The three degrees
of freedom in the design of a switch besides the option of the resonator are its
aspect ratio, the ratio of the up and down magnetized regions, and the ratio of
the magnetization of the inner and outer regions.
The waveguide tee junction differs from its wye counterpart in that its scat-

tering matrix contains four instead of two parameters. Its symmetry may be
recovered by either introducing a septum or a dielectric post along its symmetry
plane. The chapter develops this problem as a preamble to constructing the two
circulation conditions of the device. The resonator used here relies on a com-
posite resonator with the magnetization of the inner regions different from the
outer. The latter only provides a return path for the direct magnetization.
A shortcoming of the conventional arrangement is that the sense of circulation
is different on either side of the switching wire. The present arrangement avoids
this problem. The split frequencies of a post resonator with up and down uni-
formly magnetized regions are available in the literature as well as that in a turn-
stile geometry. The split frequencies of a planar composite resonator with the
outside gyromagnetic region replaced by a dielectric one is experimentally avail-
able in the literature.

285

Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches,
First Edition. Joseph Helszajn.
© 2019 Wiley-IEEE Press. Published 2019 by John Wiley & Sons, Inc.



Three different reference planes are met in the descriptions of tee junctions.
These are the characteristic planes introduced by Williams and the Dicke and
Altman ones. The Dicke terminals enter into the characterization of the
unloaded tee junction. The Altman ones are met in the adjustment of the elec-
trical symmetrical tee junctions. The latter coincide with its characteristic
planes. The reference planes of the Dicke and Altman terminals differ by 90 .

19.2 Eigenvalue Problem of the H-plane Reciprocal
Tee Junction

The eigenvalue problem of the H-plane tee junction in Figure 19.1 is compli-
cated because two if its three eigenvectors are not unique. The matric relation-
ships entering into its descriptions are summarized in this section. The square
scattering matrix S has here four independent parameters.

S =

α δ γ

δ α γ

γ γ β

19 1

One possible triplet, but not unique set of eigenvectors of the tee junction, in
Figure 19.1 has been specified by Dicke.

U1 =
1
2

1

1

2x

19 2a

U2 =
1
2

1

1

− 2 x

19 2b

Port 1

Port 2

Port 3

Characteristic 
planes

Figure 19.1 H-plane waveguide tee junction indicating the position of Dicke’s planes.
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U3 =
1
2

2

− 2

0

19 2c

The eigenvectors are here not orthogonal unless x is unity

UiU
T
i 1 i= 1,2,3 19 3

U1 is an in-phase eigenvector, U2,3 are even and odd eigenvectors, respectively.
The unknown parameter, x, in the definition of the eigenvector has been intro-
duced by Dicke to deal with the lack of uniqueness in the choice of the side port
in the tee junction. It takes on a unique value at the so-called Dicke planes at
which the eigenvalues have unit amplitude.
The connections between the scattering parameters and the eigenvalues are

given by expanding the similarity transformation in the usual way. The result is
(Allanson et al. 1946; Chait and Curry 1959)

α=
1

2 1 x + x
s1
x
+ xs2 +

1
2
s3 19 4a

β=
1

2 1 x + x
2xs1 +

2s2
x

19 4b

γ =
1

2 1 x + x
2s1− 2s2 19 4c

δ=
1

2 1 x + x
s1
x
+ xs2 −

1
2
s3 19 4d

A property of matrices is that the trace or spur of the diagonal matrix with the
eigenvalues of the junction is equal to the sum of the reflection parameters of
the scattering matrix. This condition is satisfied here

2α+ β = s1 + s2 + s3 19 5

The scattering matrix separately meets the unitary condition.
The reference terminals in this work are measured from the openings of the

square box formed by the junction of the three waveguides illustrated in
Figure 19.1.
The main task of this chapter is to construct the eigenvalue diagram of theH-

plane tee junction at the Dicke plane, which has not been done so far and to
introduce a new boundary condition together with a symmetric septum.
The value of x is that which ensures that the eigenvalues in Eq. (19.4) have unit

amplitude. The eigenvalues appearing in Eq. (19.4) may be deduced by making
use of the connection between the scattering matrix S, its eigenvalues si, and the
transformation matrix U containing the eigenvectors of the geometry as in
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Allanson et al. (1946) and Chait and Curry (1959). The approach utilized here is
to take linear combinations of Eq. (19.4):

s1 = β +
2γ
x

19 6a

s2 = β− 2xγ 19 6b

s3 = α−δ 19 6c

The above equation clearly indicates a relationship between the phase angles of
the scattering parameters (α, β, γ, and δ) and the amplitudes of the eigenvalues
(s1, s2, and s3). The planes at which the eigenvalues have unit amplitude have
been established by Dicke and are reproduced, with some simplification, in
the next section. The nature of the eigenvectors may also be verified at the Dicke
planes once the eigenvalues are available. This may be done by constructing the
matrix relationship below, one at a time.

SUi = siUi 19 7

The standing wave patterns produced by these eigenvectors are illustrated in
Figure 19.2 for x = 1.

0.5 0.5

0.707

0.5 0.5

–0.707

0.707 –0.707

0

Figure 19.2 Standing wave solutions produced
by eigenvectors of waveguide tee junction
(arbitrary plane).
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The complication of deducing the reference planes of the Dicke tee plane
junction may be avoided by recognizing that these are 90 away from the Alt-
man ones or, what is the same thing, 90 away from the characteristic planes of
the junction defined by Allanson.

19.3 Electrically Symmetric H-plane Junction
at the Altman Planes

One purpose of this section is to summarize the boundary conditions of the
electrically symmetric H-plane tee junction proposed by Altman (Allanson
et al. 1946). The scattering matrix is

S =

α δ γ

δ α γ

γ γ β

19 8

The proposed boundary condition postulated by Altman is defined by

α= β = −
1
3

19 9a

γ = δ=
2
3

19 9b

This boundary condition cannot be met at the Dicke planes, in that β and γ are
not orthogonal, but can at the characteristic planes of the junction with an
inductive vane or a suitable dielectric resonator. The unknown parameter in
the bilinear relationship between the scattering parameters and the eigenvalues
is in this instance (Allanson et al. 1946)

x=
1

2
19 10

Introducing this condition in Eqs. (19.4a)–(19.4d) yields:

α=
1
3

s1 +
s2
2

+
s3
2

19 11a

β =
1
3
s1 + 2s2 19 11b

γ =
1
3
s1−s2 19 11c

δ=
1
3

s1 +
s2
2

−
s3
2

19 11d

The above scattering parameters satisfy the unitary condition. The bilinear
transformation between the elements of the scattering and diagonal matrix
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containing the eigenvalues of the problem may be simplified by making use of
the fact that the eigenvalues s2 and s3 are degenerate. The result is

γ = δ=
1
3
s1−s2 19 12

The reflection eigenvalues are separately related to the scattering parameters by

s1 = β + 2γ 19 13a

s2 = β−γ 19 13b

s3 = α−δ 19 13c

Introducing the assumed boundary conditions into the above relation-
ships gives

s1 = 1 19 14a

s2 = s3 = −1 19 14b

The corresponding eigenvalue diagram is shown in Figure 19.3.

19.4 Characteristic Planes

The adjustment of the Altman boundary conditions is a two-step process. The
first step fixes the magnitudes of the scattering parameters of the junction. The
second fixes the angles. It is satisfied, provided the reference planes of the junc-
tion coincide with the characteristic planes defined in Figure 19.4. A property of
such planes is that when a wave incident on the junction at one port is totally
reflected by the location of a piston at the second port, the electric field vanishes
at all characteristic planes of a waveguide tee junction
The reflection coefficients at the characteristic plane are

ρ1 = ρ2 = α−δ 19 15a

ρ3 = β−
γ2

δ
19 15b

S3

S2 S1

Figure 19.3 Eigenvalue diagram of electrically
symmetrical H-plane waveguide tee junction at its
characteristic planes.
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A property of the Altman boundary condition is that

ρ1 = ρ2 = ρ3 19 16

A comparison between the eigenvalue s3 of the Altman solution and the reflec-
tion coefficients of the junction at its characteristic planes is the same.
The characteristic planes referred to the opening of the inner box of the junc-

tion are separately specified in the main and the side waveguide by

ϕ1,2 =
2πd1,2
λg

19 17a

ϕ3 =
2πd3
λg

19 17b

The standing wave solutions produced by each generator setting are indicated
in Figure 19.5 for the Altman turnstile tee junction using a cylindrical resonator.

d2

d1

a3= b3= 0

a3= b3= 0

a2= b2= 0

ρin

ρin

ρin

d0

d0

d0

d3

Figure 19.4 Definition of characteristic
planes.
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19.5 The Septum-loaded H-plane Waveguide

The geometry of the septum-loaded H-plane tee junction discussed here is
depicted in Figure 19.6. The introduction of a septum in this waveguide pro-
duces a perturbation of the field patterns of the eigenvector U1 but leaves those
produced by U2 and U3 unchanged. This feature is indicated in Figure 19.7 in

Decoupled

Input

Input S/C

S/C

S/C

Decoupled

Decoupled Input

Figure 19.5 Standing wave
patterns produced by pistons at
the characteristic planes of the
junction.

Port 1

Port 2

Port 3

Figure 19.6 Inductive vane-loaded H-plane tee junction.
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the case of a typical septum. The connection between the scattering variables
and the penetration of the vane in WR75 waveguide at a frequency of 13.25
GHz is illustrated separately in Figure 19.8. It clearly satisfies the solution pos-
tulated by Altman.

0.50.5

0.5 0.5

0.707 –0.707

–0.707

0.707

0

Figure 19.7 Standing wave solution of H-plane
waveguide tee junction with symmetry vane
(s/a = 0.25).
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Figure 19.8 Experimental results
of fabricated H-plane tee junction.
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19.6 The Waveguide Tee Junction Using a Dielectric
Post Resonator: First Circulation Condition

The waveguide tee junction has a symmetry plane across its side waveguide. It
may be loaded with either a septum or a dielectric resonator in order to recover
the electrical symmetry of a wye junction. Figure 19.9 illustrates the latter
arrangement. The relationship between the reflection coefficients α and β
and the transmissions γ and δ versus the position of a dielectric resonator
are shown in Figures 19.10 and 19.11.

Port 1

Port 2

Port 3

Dielectric or 
demagnetized ferrite

Resonator 
mount

d0 L
R

Figure 19.9 Topology of H-plane waveguide tee junction using a dielectric post resonator.
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Figure 19.10 Return loss at port 3 versus frequency for parametric values of d0/a.
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The resonator has been separately optimized in a symmetrical wye junction in
WR75 waveguide at a frequency of 13.25 GHz. It is defined by the length (L) and
radius (R) of the post resonator. Its length has been arbitrarily fixed to one-third
the narrow dimension (b) of the waveguide.

L=
1
3

19 18

The radial wavenumber of the resonator is

k0 μdemagεfR 19 19

k0 at 13.25 GHz is

k0 =
2π
λ0

= 277 5radm−1 19 20

The relative dielectric constant of the resonator is 15.0. The demagnetized per-
meability of the magnetic insulator is

μdemag =
1
3
+
2
3

1−
γM0

μ0ω

2
1
2

19 21

where

γ = 2 21 × 105 rads−1 perAm−1
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Figure 19.11 Return loss at ports 1 and 2 versus frequency for parametric values of d0/a.
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and

μ0 = 4π× 10
−7Hm−1

The ferrite material employed in this work is a yttrium iron garnet with amag-
netization of μ0M0 = 0.1780 T. The former quantity gives a value for the demag-
netized permeability of 0.94.

19.7 The Waveguide Tee Junction Circulator Using a
Gyromagnetic Post Resonator: Second Circulation
Condition

The second circulation condition of any junction circulator may be established
without ado by replacing the dielectric resonator with a gyromagnetic one.
Figure 19.12 depicts the experimental scattering parameters of the geometry
in the previous section. The standing wave circulation solution, using a com-
mercial solver, with an input signal at ports 1, 2, and 3 one at a time is illustrated
in Figure 19.13. The magnetization of the magnetic insulator μ0M0 is here
0.1780 T and its dielectric constant εf is 15.0.
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Figure 19.12 Experimental frequency response of tee junction circulator.
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19.8 Composite Dielectric Resonator

The way to avoid the shortcoming of the up and down magnetization on either
side of the switching wire is to have the magnetization of the outer region small
compared to the inner one. The outer region in this arrangement merely serves
to close the magnetic circuit. One approximate way to investigate this geometry
is to assume that the magnetization of the outside region can be neglected com-
pared to that of the inner one as shown in Figure 19.14.
The split frequencies for ring stripline junction circulator are illustrated in

Figure 19.15.
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Figure 19.13 Standing wave solution of turnstile
circulator with a gyromagnetic resonator.
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Figure 19.15 Split frequencies for ring stripline junction circulator.
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Figure 19.14 Radial composite
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20.1 Introduction

Hybrid directional couplers may be classified according to whether their output
waves are in-phase, in-quadrature, or out-of-phase. One property of such net-
works is that all the ports are matched. The in-phase arrangement is a Wilkin-
son geometry, strictly speaking, a power divider rather than a directional
coupler, the quadrature one is either a coupled line or branch line structure,
the 180 one is often referred to as a Magic-Tee. Hybrid networks are widely
used as elements in balanced mixers, microwave discriminators, and switches,
to name a few applications. The properties of directional couplers are almost
exclusively expressed in terms of the scattering matrix, and this is the approach
adopted in this chapter. The permissible symmetries are established by having
recourse to the unitary condition. The operation and design of this class of
device is often based on the odd and even mode description of the circuit.
The odd and even mode circuits of some typical structures are included for
completeness. A generalization of the quadrature hybrid is the 2n-port Butler
circuit which consists of 3 dB couplers and various fixed delays. It has the prop-
erty that power at any one of its n-input ports is divided equally between its n-
output ports with various delays. Four-port networks in which a signal at one
port is equally divided into equal out-of-phase signals are also standard building
blocks.
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20.2 Wilkinson Power Divider

One useful power divider met in microwave engineering is theWilkinson three-
port circuit illustrated in Figure 20.1. It has the property that its three ports are
matched, that the power at the input port is equally divided between the other
two and that the two output ports are isolated. The scattering matrix that satis-
fies these conditions is described by

S =
1

2

0 1 1
1 0 0
1 0 0

20 1

The presence of a resistive element in this circuit suggests that this matrix does
not satisfy the unitary condition. This remark is readily verified by forming

1
2

0 1 1
1 0 0
1 0 0

0 1 1
1 0 0
1 0 0

1 0 0
0 1 0
0 0 1

20 2

It may be separately demonstrated that the only matched three-port circuit is
that of the junction circulator.

20.3 Even and Odd Mode Adjustment of the Wilkinson
Power Divider

A general matrix which satisfies the symmetry of the Wilkinson network is

S11 S21 S21
S21 S22 S23
S21 S23 S22

20 3

50 Ω
70.7 Ω

70.7 Ω

λ/4

50 Ω

50 Ω

100 Ω

Figure 20.1 Ideal Wilkinson two-
way power divider.
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An understanding of the adjustment of this device is facilitated by identifying
the odd and even mode circuit of Figure 20.2. The odd and even modes in
Figure 20.3a and b are obtained by introducingmagnetic and electric walls along
the symmetry plane. The relationship between the input and output waves of
the circuit for in-phase signals at ports 2 and 3 is

b1

b2

b3

=

S11 S21 S21

S21 S22 S23

S21 S23 S22

0

1

1

20 4

This gives

b2 = S22 + S23 1 20 5a

Zseries

Zshunt

Zseries

4
λ

4

Z0

Z0

Z0

λ

Figure 20.2 Circuit diagram of Wilkinson two-way power divider.

Zseries

4

Z0dd

Z0

λ

Zshunt

2
S/C

Zseries

4

Zeven

Z0

λ

Zshunt

2
O/C

Z0

2

(a)

(b)

Figure 20.3 (a) In-phase and
(b) out-of-phase circuits of
Wilkinson two-way power
divider.
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b3 = S23 + S22 1 20 5b

Scrutiny of the two relationships indicates the possibility of defining an even
mode reflection coefficient at each port:

ρeven =
b2
a2

=
b3
a3

= S22 + S23 20 6

Application of out-of-phase signals at the same ports indicates the possibility of
defining an odd mode reflection coefficient at each port:

ρodd =
b2
a2

=
b3
a3

= S22−S23 20 7

Combining these last two relationships suggests that S22 and S23 are simple lin-
ear combinations of the even and odd mode reflection coefficients of the
network.

S22 =
ρeven + ρodd

2
20 8a

S23 =
ρeven−ρodd

2
20 8b

The nature of S11 may be identified by recognizing that if I2 = I3, then there is no
current through the shunt resistor as shown in Figure 20.1 or 20.2. The input
impedance of the circuit, therefore, coincides with that of the evenmode circuit:

Zin =Zeven 20 9

Since Zin has the form of Zeven it follows that

S11 = ρeven 20 10

It may be separately demonstrated that

S21 = 0 70 τeven 20 11

The even mode transmission parameter is deduced by noting that the even
mode circuit is a reactance two-port network:

τ2even = 1−ρ
2
even 20 12

The odd mode circuit is not a reactance network and so its transmission param-
eter cannot be deduced by having recourse to the unitary condition. Since it
does not enter into the description of the circuit, it is not considered further.
The element values of the idealWilkinson power divider is obtained, provided

both the even and odd mode coefficients are identically equal to zero.

ρeven = 0 20 13a

ρodd = 0 20 13b
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These two conditions are met, provided the even and odd circuits are separately
matched to the uniform transmission lines.

Zeven =Z0 20 14a

Zodd =Z0 20 14b

The detailed adjustment of the circuit in Figure 20.2 proceeds once the even
mode and the odd mode circuits are established. The required two port circuits
are illustrated in Figure 20.3a and b. The even mode impedance at midband is
therefore defined by

Zeven =
Z2
series

2Z0
20 15

The oddmode impedance at midband is separately obtained by recognizing that
the short-circuit boundary condition at port 1 is transformed to an open-circuit
at the odd mode port. The result is

Zodd =
Zshunt

2
20 16

Combining the preceding two relationships with the boundary conditions of the
ideal Wilkinson power divider gives the solution indicated in Figure 20.1.

Zseries = 2Z0 20 17a

Zshunt = 2Z0 20 17b

20.4 Scattering Matrix of 90 Directional Coupler

The directional coupler is a four-port circuit having an input port, two mutually
isolated output ports, and one port isolated from the input port. The device is
also reciprocal and all its ports are matched. The relationship between the
entries of its scattering matrix is deduced by having recourse to the unitary con-
dition subject to those boundary conditions and its symmetry. The derivations
start with the most general description of a four-port circuit in terms of its scat-
tering properties:

S =

S11 S12
S21 S22

S13 S14
S23 S24

S31 S32
S41 S42

S33 S34
S43 S44

20 18
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The port designation employed here is illustrated in Figure 20.4. Introducing
the assumption that one adjacent port is isolated from the input port gives

S12 = S21 = S34 = S43 = 0 20 19

and the scattering matrix becomes

S =

S11 0

0 S22

S13 S14
S23 S24

S31 S32
S41 S42

S33 0

0 S44

20 20

If all the ports are assumed matched, then

S11 = S22 = S33 = S44 = 0 20 21

and

S =

0 0

0 0

S13 S14
S23 S24

S31 S32
S41 S42

0 0

0 0

20 22

Making use of the fact that the directional coupler is reciprocal requires that the
scattering matrix be symmetric about the main diagonal:

S13 = S31 20 23a

S14 = S41 20 23b

S23 = S32 20 23c

S24 = S42 20 23d

Z(series)

Z(shunt)

12

3

λ/4

λ/4
4

Figure 20.4 Schematic
diagram of microstrip branch
line coupler.
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Introducing these conditions into the scattering matrix for the directional cou-
pler simplifies its description still further. The result is

S =

0 0

0 0

S31 S41
S32 S42

S31 S32
S41 S42

0 0

0 0

20 24

It is here recognized that S13 connects ports 3 and 1 and that S31connects ports 1
and 3. The symmetry of the junction may now be used to further reduce the
number of entries in the scattering matrix. If it is completely symmetric, then
the following additional relationships apply:

S31 = S42 20 25a

S41 = S32 20 25b

The required matrix, therefore, involves only two independent variables and is
given by

S =

0 0

0 0

S31 S41
S41 S31

S31 S41
S41 S31

0 0

0 0

20 26

To establish whether such a matrix is realizable as a lossless network, it is nec-
essary to invoke the unitary condition discussed:

ST S∗ = I 20 27

0 0

0 0

S31 S41
S41 S31

S31 S41
S41 S31

0 0

0 0

0 0

0 0

S∗31 S∗41
S∗41 S∗31

S∗31 S∗41
S∗41 S∗31

0 0

0 0

=

1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 1

20 28

This gives

S31
2 + S41

2 = 1 20 29a

S31S
∗
41 + S∗31S41 = 0 20 29b

The first equation satisfies energy conservation, whereas the second suggests
that one possible solution at a suitable pair of terminals is

S31 = α 20 30a
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S41 = jβ 20 30b

where α and β are real numbers. The matrix of the symmetrical directional cou-
pler is therefore

S =

0 0

0 0

α jβ

jβ α

α jβ

jβ α

0 0

0 0

20 31

The above development indicates that all directional couplers are perfectly
matched. One important property of the symmetrical arrangement is that there
is a 90 phase difference between the waves in the two output ports.
A special class of directional couplers is the 3 dB hybrid, for which there is

equal power division between ports 3 and 4. The symmetric 3 dB coupler is
in fact a hybrid junction.

S =
1

2

0 0

0 0

1 j

j 1

1 j

j 1

0 0

0 0

20 32

Figure 20.5 is a schematic diagram of a broadband multi-branch coupler.

12

34 Figure 20.5 Schematic
diagram of microstrip multi-
branch coupler.
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20.5 Even and Odd Mode Theory of Directional
Couplers

While the unitary condition may be employed to fix the permissible relation-
ships between the ports of a circuit, its adjustment is a different matter. One
approach to this task is to express the entries of the scattering matrix in terms
of its eigenvalues. The eigenvalues of this problem are the reflection coefficients
associated with the four possible ways of exciting the network that will give the
eigenvalues at any port. Another approach, which is equally applicable in the
case of the symmetrical directional coupler, is to express these quantities in
terms of linear combinations of even and odd mode transmission and reflection
parameters. The even mode variables are obtained by applying equal in-phase
waves at ports 1 and 2 of the network. The odd mode variables are obtained by
applying out-of-phase waves there. These two situations are illustrated in
Figure 20.6a and b. The even mode displays an open-circuit boundary at the
plane of symmetry. The odd mode imposes a short-circuit boundary there.
The derivation of the scattering matrix of the network in terms of the odd and

even mode parameters proceeds by taking each boundary condition one at a
time as the input waves of the directional coupler and constructing the output

O/C

O/C

O/C

O/C

S/C

S/C

S/C

S/C

(a)

(b)

Figure 20.6 (a) Even and (b) odd
mode circuits for branch line
coupler.
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ones. For the even mode excitation, the input/output relation of the directional
coupler is

b1
b2
b3
b4

S11 S21
S21 S11

S31 S41
S41 S31

S31 S41
S41 S31

S11 S21
S21 S11

=

1
2
1
2

0
0

20 33

The above scattering matrix assumes that the device is reciprocal and symmet-
rical, but no assumption is made about the boundary conditions of the ideal
directional coupler. Expanding the above matrix relation gives

b1 =
S11 + S21

2
20 34a

b2 =
S11 + S21

2
20 34b

b3 =
S31 + S41

2
20 34c

b4 =
S31 + S41

2
20 34d

Evenmode reflection and transmission coefficients may now be defined for each
waveguide as follows:

ρeven =
b1
a1

=
b2
a2

= S11 + S21 20 35

τeven =
b3
a1

=
b4
a2

= S31 + S41 20 36

where ρeven and τeven are the reflection and transmission coefficients for each
waveguide. Since there is no coupling between the two waveguides for this
set of incident waves, the coupled waveguides may be replaced by a single wave-
guide with an even mode field pattern.
For the oddmode excitation, the input/output relation of the network becomes

b1
b2
b3
b4

S11 S21
S21 S11

S31 S41
S41 S31

S31 S41
S41 S31

S11 S21
S21 S11

= −

1
2
1
2

0

0

20 37
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Odd mode reflection and transmission coefficients for each waveguide are here
defined by

ρodd =
b1
a1

=
b2
a2

= S11−S21 20 38

τodd =
b3
a1

=
b4
a2

= S31−S41 20 39

The reflection and transmission coefficients are again identical for each wave-
guide section so that the four-port network may be once more replaced by a
two-port one for this excitation. The above two solutions may now be combined
to give

S11 =
ρeven + ρodd

2
20 40a

S21 =
ρeven−ρodd

2
20 40b

S31 =
τeven + τodd

2
20 40c

S41 =
τeven−τodd

2
20 40d

Scrutiny of the relationships indicates that the boundary conditions of an ideal
directional coupler may be established in one of two ways.
One solution requires that the odd and even mode reflection coefficients are

zero while the transmission ones are different. These boundary conditions lead
to the scattering matrix of the ideal directional coupler.

S11 = 0 20 41a

S21 = 0 20 41b

S31 =
τeven + τodd

2
20 41c

S41 =
τeven−τodd

2
20 41d

20.6 Power Divider Using 90 Hybrids

One of the simplest variable power dividers is obtained by placing a variable
phase-shifter between two 3 dB hybrid couplers. If the phase setting of the
phase-shifter is 0 , then the power is transmitted to the port diagonally opposite
the input port; if it is set to 180 , it is emergent at the other port. Any other
power division can be accommodated with this device by suitably adjusting
the phase-shifter.
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The operation of this type of device may be understood by forming the trans-
mission matrices of each of its three sections in terms of its scattering ones one
at a time. The scattering matrix of the input and output hybrid has been given in
Eq. (20.32).
The scattering matrix of a four-port circuit formed by two decoupled lines

with phase constants θ31 and θ42, respectively, is

S =

0 0

0 0

S31 0

0 S42
S31 0

0 S42

0 0

0 0

20 42

where

S31 = 1exp − jθ31 20 43a

S42 = 1exp − jθ42 20 43b

The operation of the overall device is readily understood by forming the input–
output relationships of each section one at a time or by forming the overall
transmission matrix.
The solution is

b1 = 0 20 44a

b2 = 0 20 44b

b3 = sin
θ31−θ42

2
expj

θ31 + θ42
2

20 44c

b4 = cos
θ31−θ42

2
expj

θ31 + θ42
2

20 44d

Setting θ31 = θ42 gives

b3 = 0 20 45a

b4 = 1 20 45b

If θ31 = θ42 + π, the result is

b3 = 1 20 46a

b4 = 0 20 46b

The arrangement in Figure 20.5 may therefore be used to divide an incident
wave at port 1 between ports 3 and 4 by varying the angle of the phase-shifter.
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20.7 Variable Power Dividers

A generalization of the simple Butler power divider using 3 dB hybrids may be
used by employing variable phase-shift networks between two 2n-port Butler
ones. A typical Butler network in the case of n = 4 is illustrated in
Figure 20.7. It consists of 3 dB hybrids, fixed phase-shifters, and crossed links.
The use of n-way dividers in phased array equipment is illustrated in Figure 20.8.

Power divider matrix

1
P

45°

45°

2

3

4

P
4

P
4

P
4

P
4

Figure 20.7 Butler network.

(a) (b)

(c)

Exciter

Driver

High-
power
ampl

Power
divider

Phase-
shifter Radiator

Exciter

Driver

Power
divider

Phase-
shifter Radiator

Medium-
power
ampl

Sub-array
power
divider

Power
divider

Phase-
shifter

Low-
power
ampl

Radiator

Exciter

Driver

Figure 20.8 Use of Butler networks in phased array equipment: (a) nondistributed (passive),
(b) semidistributed and (c) fully distributed (active).
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If two such arrays are connected back to back the power will be recombined in
the second Butler network and routed to the port diagonally opposite the input
port. If, on the other hand, n-variable phase-shifters are connected between the
two dividing networks, then the power can be recombined at any of the other
output ports by properly adjusting the phase-shifters. Figure 20.9a depicts one
arrangement for n = 4; Figure 20.9b indicates the appropriate values of the
phase-shift sections in order to switch the power to any output port.
The original Butler network relies on fixed phase delays and some crossed

lines for its operation. However, in some applications, the fixed phase-shifters
can be omitted. One possible configuration in the case of an n = 4 network is
depicted in Figure 20.10a; the required phase-shift settings are given in
Figure 20.10b. The advantage of this circuit is that it allows the fixed phase-
shifters in the original Butler circuit to be replaced by only 0 and 180 sections.

20.8 180 Waveguide Hybrid Network

The possibility of realizing 3 dB hybrids with in-phase or out-of phase instead of
in-phase quadrature output signals by imposing a single symmetry plane on a
four-port network will now be established. One possible solution has the

0

0

0

–90°0

0

00

–180°

–270°

A B C D

0

–90°

–180°–180°

–180°

–270°

11

21

31

41

Phase shiftInput
to output

1
A

Combiner matrixPhase shifters

41

31

21

1145°

45°45°

45°
P

P

Output
ports

Input
ports

(b)

(a)
Divider matrix

B

C

D

2

3

4

Figure 20.9 (a) Four-channel Butler switch. (b) Phase setting for n = 4 Butler switch.
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property that all its ports are matched, that one port is decoupled from an input
port, and that a signal at one input port produces equal in-phase signals at two
output ports and that a signal at another input port produces out-of-phase sig-
nals at two output ports. One classic waveguide version is the Magic-Tee one
illustrated in Figure 20.11. If the H-port is taken as port 1, then it is appropriate
to take the E-port as port 2. This nomenclature ensures that the entries con-
nected with ports 1 and 2 of the scattering matrix of the junction have the sym-
metry of the 90 hybrid. If this port nomenclature is adopted, then

S12 = S21 = 0 20 47

It is also assumed in the first instance that ports 3 and 4 are decoupled

S34 = S43 = 0 20 48

and that the network is matched

S11 = S22 = S33 = S44 = 0 20 49

1
A

Combiner
matrix

Variable phase
shifters

41

31

21

11

P

P

Input
ports

Output
ports

(a)

(b)

Divider
matrix

B

C

D

2

3

4

–180°

–180°

0

–180°0
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–180°
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11,1 2 3 421, 31, 41
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4321 41, 31, 21, 11
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Switch paths established

Figure 20.10 (a) Four-channel hybrid matrix switch. (b) Phase setting for n = 4 hybrid
network switch.
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The scattering matrix of the device under these assumptions is described by

S =

0 0

0 0

S31 S41
S32 S42

S31 S32
S41 S42

0 0

0 0

20 50

In order to verify whether these assumptions are valid, recourse is made to the
unitary condition. This gives

S31
2 + S41

2 = 0 20 51a

S32
2 + S42

2 = 0 20 51b

S31
2 + S32

2 = 0 20 51c

S41
2 + S42

2 = 0 20 51d

and

S∗31S32 + S
∗
41S42 = 0 20 52a

S∗31S41 + S
∗
32S42 = 0 20 52b

Scrutiny of Eqs. (20.51a) and (20.51c) indicates that one relation between S41
and S32 is

S41
2 = S32

2 20 53a

E-arm

H-arm

Arm 4
Arm 3

Arm 2

Arm 1

Symmetry
plane

Figure 20.11 Symmetry plane
of Magic-Tee.
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A separate inspection of Eqs. (20.51b) and (20.51c) also gives one between S31
and S42:

S31
2 = S42

2 20 53b

One solution that meets both relationships is that encountered in connection
with the 90 hybrid solution.

S41 = S32 20 54a

S31 = S42 20 54b

Introducing these two conditions into either Eq. (20.52a) or Eq. (20.52b)
also gives

S∗31S41 + S31S
∗
41 = 0 20 55

One possible solution is therefore

S11 = 0 20 56a

S21 = 0 20 56b

S31 = α 20 56c

S41 = jβ 20 56d

This solution corresponds to the description of the quadrature coupler and has
already been dealt with.
Another possibility which also satisfies both Eqs. (20.53a) and (20.53b) but

which has not been considered so far is achieved, provided

S32 = S41 20 57a

S42 = −S31 20 57b

Introducing these two conditions into either Eq. (20.52a) or Eq. (20.52b) now
indicates that

S∗31S41−S31S
∗
41 = 0 20 58

One solution that meets both the preceding equation as well as Eq. (20.51a) for
an input at port 1 is

S31 =
1

2
20 59a

S41 =
1

2
20 59b
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The relationship between S42 and S32 is now met by satisfying Eq. (20.52a) or
Eqs. (20.52b) and (20.51b). One possibility is

S32 =
1

2
20 60a

S42 =
−1

2
20 60b

The matrix description of the 180 class of network is, therefore, specified by

S =
1

2

0 0

0 0

1 1

1 −1

1 1

1 −1

0 0

0 0

20 61

Figure 20.12 depicts one application of the Magic-tee.
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Index

a
alternate line transformer 266–267
Altman boundary conditions 290, 291
anticlockwise circular polarizations 50
arbitrary n-port microwave network

153

b
bandpass frequency 219–221
Bessel function 195
B–H loop characteristics 107

maximum flux composite circuit vs.
temperature 109

nickel–cobalt ferrite 108
YIG, temperatures 107

bilinear transformation 163
birefringence

cutoff frequency 70
direct magnetic field intensity 65, 67
quadrature magnetic coil

arrangement 68
quadruple coil geometry 68
round birefringent waveguide 69

broadband multi-branch coupler 308
Butler network 313–314

c
cavity resonator, up/down

magnetization 260–261
characteristic planes 290–292

circular gyromagnetic waveguide
188

circular polarization, and edge mode
effect 118–120

circular polarization, parallel plate
waveguides

dielectric loaded, open sidewalls
electric and magnetic fields 45
magnetic wall boundary
condition 43

Maxwell’s equations 40
transmission line theory 41

rectangular waveguide
backward direction, of
propagation 39

forward direction, of
propagation 39

TE01 mode 37
three field components 38

clockwise circular polarizations 50
coaxial differential phase-shifter
circular polarization 83
coaxial ferrite phase-shifter 83
conformal mappings 85
conformal transformation 86
higher-order modes 88
homogenous line, capacitance 85
nonreciprocal coaxial phasor 82
nonreciprocal coaxial transmission

line 83, 84
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coaxial ferrite cylinder 33
coaxial ferrite phase-shifter 88
complex gyrator circuit
three-port junction circulator

265–266
turnstile circulator 204–207

composite dielectric resonator
297–298 see also waveguide
H-plane tee junction circulator

counterrotating generator settings
188

coupled mode theory
normal modes 53
orthogonal polarizations 55
scattering matrix 54
transmission variables 57

coupled quarter-wave long
resonators 249, 250

coupled wave theory, Faraday
rotation 32–33

coupling angle 172
Curie temperature 107
curl equations 43
cutoff frequency 70
cutoff numbers 173
twin slab ferrite phase-shifter

99–102
cylindrical resonator, shape factor

15–16

d
Dicke eigenvalue solution 247–248
Dicke junction 127
Dicke planes 287
dielectric loaded parallel plate

waveguides, open sidewalls
electric and magnetic fields 45
magnetic wall boundary condition

43
Maxwell’s equations 40
transmission line theory 41

differential phase-shift (Δϕ) 82
directional couplers 309–311

direct magnetic field 83
direct magnetic field intensity 65, 67
discretization, rectangular waveguide

phase-shifters 97–98

e
edge mode effect 111

circular polarization 118–120
circulators 123–124
dispersion equation 114
edge mode characteristic equation

115
ferrite-loaded parallel plate

waveguide 111
fields and power 115–118
isolators 123–124
Maxwell’s first curl equation 113
phase-shifter 123–124
air–ferrite–dielectric–air 123
octave band frequency 120

wave admittance 114
eigen-networks 132

counterrotating 253
E-plane circulator 245
H-plane circulator 245
in-phase 253
reflection angles 245
reflection eigenvalues 246
turnstile circulator 209–211
unit elements 244

eigenvalue
adjustment, turnstile plane switch

130–132
algorithm 147–148
diagram
H-plane waveguide tee junction

290
ideal three-port junction

circulator 207
reciprocal three-port junction

206
problem, H-plane reciprocal tee

junction 286–289
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electromagnetic (EM) fields 172
elliptical Faraday rotator 77
E-plane ferrite-loaded ridge

waveguide 81
E-plane turnstile off/on switch

waveguide 134–136
eigen-networks 132
eigenvalue adjustment 130–132
E-plane tee junction, even and odd

eigenvectors 128–130
numerical adjustments, of

passbands 133–134
reflection switches 128

E-plane waveguide wye junction, first
circulation condition 251–252

calculations of eigenvalues
counterrotating eigen-network

253
in-phase eigen-network 253
scattering parameters 253
small gap in-phase reflection

eigenvalue, Smith chart of 254
Dicke eigenvalue solution

247–248
eigen-networks 244–246
E-plane geometry 249–251
pass band characteristic

plane 246–247
reflection eigenvalue diagrams, of

three-port junction circulator
242–244

scattering matrix, of reciprocal
E-plane three-port Y-junction
240–242

schematic diagram 240
stop band characteristic plane

246–249
equivalent permittivity 199
even and odd eigenvectors

E-plane waveguide tee junction 130
lumped element models 129

even demagnetized eigen-network
132

even magnetized eigen-network 132
externally latched junction

circulators 7

f
Faraday rotation effect 4, 19, 20,

49, 210
coupled wave theory 32–33
four-port circulator 30–31
isolator 29–30
magnetic variables 25–27

Faraday rotation-type phase shifter
31–32

Faraday rotator 138
ferrite-loaded transmission lines 42
field and power distribution

116, 117
field displacement 90
finite element (FE) 171, 218
algorithm 222–224
characteristic equation 226
coordinate system 102
cutoff numbers, twin slab ferrite

phase-shifter 99–102
discretization, rectangular waveguide

phase-shifters 97–98
evaluation, flow chart for

225, 227
industrial practice

dielectric loaded and regular
waveguides 104

electronic driver circuit, multi-
toroid latching waveguide
phase-shifter 105

higher-order modes, ferrite
phase-shifter 104

inverted reentrant turnstile
junction, in half-height WR75
waveguide

for counterrotating mode 225
first circulation condition 228
for in-phase mode 225, 226
Smith chart representation 229
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finite element (FE) (cont’d)
LS modes limit waveguide

bandwidths 98–99
polynomial solutions 225
split phase constants, twin slab ferrite

phase-shifter 99–102
tetrahedral 97
toroidal phase-shifter, in rectangular

waveguide 96
waveguide toroidal phase-shifter

102–103
finite element method (FEM) 178
first circulation condition
E-plane waveguide wye junction

251–252
calculations of eigenvalues
253–254

Dicke eigenvalue solution
247–248

eigen-networks 244–246
E-plane geometry 249–251
pass band characteristic plane
246–247

reflection eigenvalue diagrams, of
three-port junction circulator
242–244

scattering matrix, of reciprocal
E-plane three-port Y-junction
240–242

schematic diagram 240
stop band characteristic plane
246–249

H-plane turnstile waveguide
circulator 217

bandpass frequency, of turnstile
junction 219–221

FE adjustment 224–230
FE algorithm 222–224
in-phase and counterrotating
modes, of turnstile junction
221–222

integrated substrate waveguide
circulator 219

reentrant turnstile junction, in
standard WR75
waveguide 230, 231

reference plane 222, 223
split frequencies, of gyromagnetic

resonators 233–236
susceptance slope parameter of

degree-1 junction 230, 232
four-port turnstile junction

nonreciprocal 187
reciprocal 186

free space permeability 101
frequency response, of two-port planar

circuits
band elimination filter,

decomposition of 162, 164
bilinear transformation 163
reflection coefficient 165
stripline dipolar switch 165
stripline switch, using puck/plug

half-spaces 166–168
transmission coefficient 163
two-port gyromagnetic dipolar

switch 164
two-port isotropic stripline band

elimination filter 162

g
gap-dependent dielectric constant

138
Green’s theorem 159
gyrator conductance 207–208
gyrator network 27–29
gyromagnetic circular

waveguides 208–209
gyromagnetic cutoff space

179–180
gyromagnetic insulator 5
gyromagnetic medium 19
gyromagnetic resonators

closed composite 197
practical 196
single wire loop 257
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split frequencies of
characteristic equation 233
frequency responses 235
gyromagnetic resonator, saturation

magnetization 236
quality factor 234, 236
scalar counterrotating

permeabilities, eigenvalue
diagrams 233, 234

turnstile circulator 297
up/down magnetization 261–262

gyrotropy 259

h
half dielectric-filled coaxial line 84
horizontal/vertical linear polarization

50
H-plane configuration 88
H-plane junction, Altman planes

289–290
H-plane reciprocal tee junction

286–289
H-plane turnstile junction circulator

188
H-plane turnstile waveguide circulator,

first circulation condition 217
bandpass frequency, of turnstile

junction 219–221
FE adjustment 224–230
FE algorithm 222–224
in-phase and counterrotating

modes, of turnstile
junction 221–222

integrated substrate waveguide
circulator 219

reentrant turnstile junction, in
standard WR75 waveguide

calculated and measured frequency
responses 230, 231

Smith chart solution 230, 231
reference plane 222, 223
split frequencies, of gyromagnetic

resonators 233–236

susceptance slope parameter of
degree-1 junction 230, 232

H-plane waveguide tee junction 294
demagnetized pass and stop bands

148–149
eigen-networks 146–147
eigenvalue diagrams, small-and

large-gap 144–145
hysteresis loop 9
display 9–11
latching phase shifter 9

i
ideal circulator 189
immittance matrices 160–161
impedance and admittance matrices
mutual energy consideration

154–156
reciprocal planar circuits 157–160
self-impedance 159, 160

inductive vane-loaded H-plane tee
junction, 292

in-phase generator setting 188
in-phase in-space quadraturemode 55
in-phase mode 198–200
insertion loss (a) 82
internally latched junction

circulators 7

j
junction circulators
latched prism resonator 257–258
one-port complex gyrator circuit

265
with up and down magnetization

274–275

l
Lagrange interpolation polynomials

160
large-gap demagnetized geometry 137
latched quasi-TEM phase-shifters

91–92
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latching circuits, construction of
106–107

linear simultaneous equations 160
LS modes limit waveguide

bandwidths 98–99

m
magnetic circuits
using major hysteresis loop

hysteresis loop, of latching
phase-shifter 106

microwave ferrite
phase-shifters 103

standing wave solution, of
three-port circulators 8

waveguide circulators 7
using minor hysteresis loops

hysteresis loop, of latching
phase-shifter 106

microwave ferrite phase-shifters
103

magnetic flux densities 273
magnetized ferrite-loaded transmission

line 103
magnetized ferrite medium, coupled

and normal modes
circularly polarized waves 73
clockwise and anticlockwise,

circularly polarized waves
yields 72

orthogonal linearly polarized
waves 72

vertical and horizontal, linear
polarized waves 72

magnetostatic problem 273–274
maximum power transfer 206
Maxwell’s equations 20, 40
Maxwell’s two curl equations 21
microstrip branch line coupler 306
microstrip configurations 123
microstrip triangular resonator 181
microwave switching, using junction

circulators

cylindrical resonator, shape
factor 15–16

externally latched junction
circulators 7

internally latched junction
circulators 7

magnetic circuit, major hysteresis
loop 8–9

magnetostatic problem 13–14
multiwire magnetostatic problem

14–15
standing wave solution, resonators

7–8
switched junction circulator 1–4
switching coefficient, of

magnetization 11–13
turnstile circulator 4–5

midband frequency (f0) 82
mode transducers/quarter-wave

plates 49
modified Bessel function 195
mutual impedance, two-port planar

circuit 154, 156

n
90 directional coupler

broadband multi-branch coupler
308

four-port circuit 305
microstrip branch line coupler 306

90 hybrids power divider 311–312
nonreciprocal circular polarizer,

elliptical gyromagnetic
waveguide

elliptical Faraday rotator 77
nonreciprocal coupling 78
reciprocal coupling 78

nonreciprocal coaxial transmission
line 83, 84

nonreciprocal coupling 78
nonreciprocal ferrite devices 37
nonreciprocal ferrite quarter-wave

plates
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birefringence
cutoff frequency 70
direct magnetic field

intensity 65, 67
quadrature magnetic coil

arrangement 68
quadruple coil geometry 68
round birefringent waveguide 69

circular polarizer, elliptical
gyromagnetic waveguide

elliptical Faraday rotator 77
nonreciprocal coupling 78
reciprocal coupling 78

circulator representation 71–72
circulators and switches
ferrite phase-shifter circuit 75
switchable circular polarizer 76
two-mode transducers 76, 77

four-port circulator 71
magnetized ferrite medium, coupled

and normal modes
circularly polarized waves 73
clockwise and anticlockwise,

circularly polarized waves
yields 72

orthogonal linearly polarized
waves 72

vertical and horizontal, linear
polarized waves 72

variable phase-shifters 73–75
nonreciprocal microwave

coupled wave theory, of Faraday
rotation 32–33

Faraday rotation 20–25
isolator 29–30
magnetic variables 25–27

Faraday rotation-type phase
shifter 31–32

four-port Faraday rotation
circulator 30–31

gyrator network 27–29
partially ferrite-filled circular

waveguide 33–34

normalized bandwidth (BW) 82
normalized differential phase-shift

120
n-port planar circuits, using finite

elements 160–161

o
octave band frequency 120
odd demagnetized eigen-network

132
odd magnetized eigen-network 132
one-port homogeneous circuit 153
180 waveguide hybrid network

314–318
3 dB hybrids 318
Magic-tee 315, 316

on/off and off/on two-port H-plane
waveguide

demagnetized pass and stop bands
148–149

eigen-networks, H-plane tee
junction 146–147

eigenvalue algorithm 147–148
even and odd eigenvector 141
Faraday rotator 138
large-gap demagnetized geometry

137
operations 140–141
phenomenological description

142–143
shunt H-plane tee junction

magnetized and demagnetized pass
band 139, 140

magnetized and demagnetized stop
band 139, 140

shunt circuit 138
two-layer quasi-planar resonator

137
open dielectric cavity resonator
characteristic equation 196, 198
closed composite gyromagnetic

resonator, circuit topology of
197
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open dielectric cavity resonator (cont’d)
coupled quarter-wave long

ferrite or 197
gap factor 198
practical gyromagnetic resonator

196
quarter-wave long resonators, single

and pairs of 198, 199
open dielectric waveguide 193–196
orthogonal linearly polarized waves 72
orthogonal phase constants 59
out-of-phase in-space quadrature

mode 55, 56

p
passbands, numerical adjustments

133–134
passive power dividers
directional couplers 309–311
90 directional coupler 305–308
180 waveguide hybrid

network 314–318
using 90 hybrids 311–312
variable power dividers 313–314
Wilkinson power divider

even and odd mode 302–305
two way power divider 302

phase constants, using cavity method
dielectric constants, of round

waveguide 60, 61
dispersion effects 60
orthogonal phase constants 59

phase deviation 82
planar circuits 90
prism turnstile resonators latch
alternate line transformer 266–267
cavity resonator, up/down

magnetization 260–261
complex gyrator circuit 267
gyromagnetic resonator, up/down

magnetization 261–262
schematic diagram 257–258
split frequencies of 261

squareness ratio 264
three-port junction

circulator 265–266
tri-toroidal resonator 258–259,

262–264
propagation constant 41

q
quality factor

gyromagnetic resonator, up/down
magnetization 261–262

junction circulators 274–275
turnstile circulator 207–208,

211–212
of wired junction 266

quarter-wave long resonators
198, 199

quasi-static approximation 199

r
radial composite resonator 298
reciprocal coupling 78
reciprocal quarter-wave plates

anticlockwise circular
polarizations 50

clockwise circular polarizations 50
coupled mode theory 53–57
normal modes 53
orthogonal polarizations 55
scattering matrix 54
transmission variables 57

four-port network 51
horizontal/vertical linear

polarization 50
input and output polarizations 53
phase constants, using cavity method
dielectric constants, of round

waveguide 60, 61
dispersion effects 60
orthogonal phase constants 59

port nomenclature 51
scattering matrix 54
variable rotor power divider
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input and output waves, half-wave
plate 62

rotary vane phase-shifter 63
waveguide model 49
dielectric constant 59
inhomogenous and homogenous

waveguide 58
rectangular waveguide

backward direction, of
propagation 39

forward direction, of
propagation 39

TE01 mode 37
three field components 38

reentrant and inverted reentrant ferrite
switches 138

reference plane 222, 223
reflection coefficient 223

stop band characteristic plane 247
ridge waveguide differential

phase-shifter
circulator 90
coaxial ferrite phase-shifter 88
ferrimagnetic resonance 87
H-plane configuration 88
nonreciprocal, using closed

ferrite magnetic circuits
92

WRD200, 89
rotary vane phase-shifter 63

s
scalar permeability 118, 119
scattering matrix 54, 186

bilinear relation 190
eigenvalue diagram
ideal three-port junction

circulator 192
reciprocal three-port junction

192
H-plane junction 242
of reciprocal E-plane three-port

Y-junction 240–242

second circulation condition, turnstile
junction circulator

complex gyrator of 204–207
eigen-network of 209–211
gyrator conductance 207–208
gyromagnetic waveguides

propagation 208–209
quality factor of 207–208, 211–212
susceptance slope parameter

207–208, 213
self-impedance 159, 160
septum-loaded H-plane waveguide

292–293
series tee junction 128
shape factor
cylindrical resonator 15–16
tri-toroidal resonator 262–264

shunt circuit 138
single quarter-wave long resonator

249, 250
single turnstile resonator
three-port E-plane turnstile

circulator 189
waveguide junction circulators

204, 218
single turnstile resonators 218
small-and large-gap, eigenvalue

diagrams 144–145
split frequency 233–236
cavity gyromagnetic resonators 275
cavity resonator, up/down

magnetization 260–261
planar gyromagnetic resonators

275
prism resonator, up and down

magnetization 276–277
tri-toroidal cavity 277–278

split phase constants, twin slab ferrite
phase-shifter 99–102

squareness ratio 264
stepped impedance transformer 56
stopband condition 131
stripline circuit 155
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stripline edge mode phase-shifter 81
field displacement 90
planar circuits 90

stripline switch, using puck/plug
half-spaces 166–168

susceptance slope parameter
207–208, 213

switched junction circulator 1–4
current and magnetic field, in

ferrite disc 4
microwave phase shifter 2
standing wave patterns 3
two-step procedure 1

switching coefficient, of
magnetization 11–13

switch resonator 263–264

t
TE01 mode 37
temperature compensation, composite

circuits
tensor permeability 101
threefold symmetry, standing wave

solution 7–8
three-port junction circulator
complex gyrator circuit 265–266
eigenvalue diagram 207
turnstile junction circulator

E-plane 189
H-plane 188

time-space quadrature 68
TM field patterns, of triangular planar

resonator 180–182
circulation solutions 182–184
field components 182

toroidal phase-shifter, in rectangular
waveguide 96

transmission coefficient 163, 223
transmission line theory 41
transverse magnetic (TM) mode 172
transverse x–y plane 41
tri-toroidal composite prism

resonator 279–280

tri-toroidal resonator
prism resonator
geometry of 258–259
shape factor of 262–264

waveguide ferrite switches 270–271
tri-toroidal wye resonator 280–282
turnstile arrangement 185
turnstile junction circulator 4–5

first circulation condition 200
cavity resonators, frequencies of

193
eigen-solutions 191
E-plane 189
H-plane 188
in-phase mode 198–200
nonreciprocal 187
open dielectric cavity

resonator 196–198
open dielectric waveguide, effective

dielectric constant of
193–196

reciprocal 186
reflection coefficient 189, 190
scattering matrix 190–192

second circulation condition
complex gyrator of 204–207
eigen-network of 209–211
gyrator conductance 207–208
gyromagnetic waveguides

propagation 208–209
quality factor of 207–208,

211–212
susceptance slope parameter

207–208, 213
two-mode transducers 62

u
unit elements (UEs) 128, 138,

175, 244

v
variable phase-shifters 73–75
variable power dividers 313–314
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variable rotor power divider
input and output waves, half-wave

plate 62
rotary vane phase-shifter 63

voltage standing wave ratio
(VSWR) 82

w
wave admittance 114
waveguide ferrite switches

calculation and experiment
278–279

gyromagnetic resonators 269–270
junction circulators, up and down

magnetization 274–275
magnetostatic problem 273–274
split frequencies
cavity gyromagnetic resonators

275
planar gyromagnetic resonators

275
prism resonator, up and down

magnetization 276–277
tri-toroidal cavity 277–278

tri-toroidal composite prism
resonator 279–280

tri-toroidal resonator 270–271
tri-toroidal wye resonator, up and

down magnetization
280–282

wire carrying slot geometry
272–273

waveguide H-plane tee junction
circulator

Altman planes 289–290
characteristic planes 290–292

composite dielectric resonator
297–298

dielectric post resonator 294–297
eigenvalue problem of 286–289
gyromagnetic post resonator

296–297
septum-loaded H-plane

waveguide 292–293
waveguide junction circulators

203–205
waveguide model 49
dielectric constant 59
inhomogenous and homogenous

waveguide 58
Wilkinson power divider
even and odd mode coefficients 304
three port circuit 302
two way power divider 303

Wilkinson two way power divider
302, 303

wire carrying slot geometry 272–273
wired junction 266
wye resonator 171
cutoff space 172–174
equipotential lines, of dominant

mode 173
gyromagnetic cutoff space 179–180
resonant frequencies, quasi-wye

magnetized resonators
175–179

segmentation 173
standing wave circulation solution

174–175
symmetric mode 174
TM field patterns, of triangular planar

resonator 180–182
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